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AND/OR Boolean network (AND/OR BN)

• Mathematical model of genetic network

• Very simple model

– Each node takes either 0 or 1.

•Node → gene

•1 → active,  0 → inactive

– States of nodes change synchronously

•According to regulation rules (= Boolean functions)

AND/OR BN
Regulation rules are limited  
to disjunction or conjunction
of parent nodes.

AND/OR BN
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Example of AND/OR BN



What is a singleton attractor?

•[V1, V2, V3]=[1, 1, 0] → a singleton attractor
•The state of [1,1,0] never changes.
•[1,1,0] has a self-loop in the state-transition.

•One of the most stable states
•play an important role in biological systems

a singleton
attractor



(cyclic attractor) 

•In this talk, we deal with only singleton attractors.

a singleton
attractor

•[0,1,0]→[1,1,0]→[1,0,0]→[0,1,1]
•An attractor with period 4

•[1,1,0]
•An attractor with period １

（singleton attractor）

a cycle of length 4

Cyclic attractor
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The consistency checking can 
be done in          time.

Singleton attractor
→values of nodes never change.

Since the main algorithm 
takes exponential time, 
we can ignore the time for 
consistency checking.

① assign values to all nodes
② consistency checking

Consistency checking for node d
-d=1 → OK
-d=0 →  contradiction 

time algorithm (Tamura and Akutsu, 2009))787.1( nO
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If all assignment are examined,
it takes           time.

If (b,d)=[1,0], the value of
d changes from 0 to 1.
It contradicts the condition
of a singleton attractor.

By using this fact, we can
reduce the computational time.

① assign values to all nodes
② consistency checking

For every node pair, the number

of assignments which we have

to examine is at most 3 of 4 

assignments

time algorithm (Tamura and Akutsu, 2009))787.1( nO
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Initial state:
All nodes are non-assigned 

While there exists 
a non-assigned edge (u,v),
examine all possible 
3 assignments on (u,v).

Possible assignments for
(b,d) are [0,0], [0,1] and [1,1].
Note that [1,0] is not allowed.

Possible assignments for
(f,i) are [0,1], [1,0] and [1,1].
Note that [0,0] is not allowed.When K nodes are assigned, the number 

of cases are bounded by
f(K)=3・f(K-2),   f(2)=3.

STEP 1 of the proposed algorithm
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Let W be nodes whose 
values have not been 
determined yet.

If |W| ≦ n -αn, 
examine all possible 
assignments on W

STEP 2

If STEP 2 is executed, the computational time is 
at most                         . 

already
assigned

already
assigned

already
determined

For example,

a,c,g,h ∈W

All      assignments for a,c,g,h

are examined if STEP2 is

executed.

42
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If (b,d)=[0,1] is assigned,
(a∨g)(a∨c)=1 
must be satisfied.

STEP 3

If (f,i)=[1,1] is assigned,
(c∨g∨h)(g∨h)=1 
must be satisfied.

When K nodes are assigned,
the condition of a singleton 
attractor can be represented 
by at most K clauses.

SAT problem with K clauses can be solved in              time.                 
.             (Yamamoto, 2005).

If |W|>n-αn,
solve a SAT problem.

→the overall computational time is bounded by                            .

)234.1(
~ KO



After STEP1
if |w|≦n-αn, 

then STEP 2 is executed.

the computational time is                           .

else, STEP 3 is executed.

the computational time is                             .

Theorem 

By setting K=0.767n  (α=0.767),

are obtained.

The detection of a singleton attractor can be done
in              -time for AND/OR BNs. (worst case)



Improved analysis

In the previous analysis, 
the number of SAT clauses constructed in STEP 1 
is estimated as same as 
the number of assigned nodes in STEP 1.

However, there are cases in which SAT clauses are not constructed.

When 0 is assigned to v4,

no SAT clauses are constructed

When 1 is assigned to v4,

a SAT clause is constructed. 

example



Improved analysis

By examining all cases, it can be observed that  the worst case

for the number of constructed SAT clause is

- One of the three assignments add 2 clauses.

- Two of the three assignments add 1 caluse.



After STEP1
if |w|≦n-αn, 

then STEP 2 is executed.

the computational time is    .

else, STEP 3 is executed.

the computational time is .

Theorem 

By setting K=0.7877n  (α=0.7877),

are obtained.

Detection of a singleton attractor can be done 
in                -time for AND/OR BNs.



Is there a singleton attractor
in a given Boolean network?

If all assignment are examined,
it takes           time.

If (b,d)=[1,0], the value of
d changes from 0 to 1.
It contradicts the condition
of a singleton attractor.

By using this fact, we reduced 
the computational time in the 
previous algorithm.

The consistency checking can 
be done in polynomial time.
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examine 3 possible
assignments 

Determined
indirectly

examine 3 possible
assignments 

The consistency checking can 
be done in polynomial time.

time algorithm (Tamura and Akutsu,2009))787.1( nO



While there exist non-assigned neighboring edges,

examine all possible assignment, which are at most 5.

For example, possible assignments for (e,i,j) are

[0,0,0],[0,0,1],[1,0,0],[1,0,1],[1,1,1]

since [0,1,0],[0,1,1],[1,1,0] are impossible assignments.

More improved algorithm

examine 5 possible
assignments 

examine at most 5 
possible assignments 

examine 3 possible
assignments 

determined
indirectly



After STEP1
if K>0.767(n-L), 

then STEP 3 is executed.

the computational time is                           .

else if STEP 4 is executed.

the computational time is                             .

Theorem

The detection of a singleton attractor can be done
in               -time for AND/OR BNs.



Improved analysis
There are cases where SAT clauses are not constructed.

The worst case is as follows:

(1) One of the five assignments adds one clause.

(2) Three of the five assignments add two clauses.

(3) One of the five assignments adds three clauses.



After STEP1
if K>0.8286(n-L), 

then STEP 3 is executed.

the computational time is                           .

else if STEP 4 is executed.

the computational time is                             .

Theorem

The detection of a singleton attractor can be done
in               -time for AND/OR BNs.
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Models of metabolic networks

- Mathematical model
- Ordinary differential equation (ODE) model

high explanatory power, but needs many parameters,
often used for small models

- Flux balance analysis (FBA) model  
assumes a steady state, often used for genome-scale
model, good for optimizing production of biomass

- Elementary mode (EM) model, 
less explanatory power, good for checking the 
produciblity of biomass

- Boolean model
Every node is assigned either 0 or 1.
Simple model, but good for logical analysis



Metabolic network on Boolean model
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- Every node is assigned either 0 or 1.
- For reactions, 

1: can takes place,     0: cannot take place.
- For compounds,

1: producible, exist,    0: not producible, not exist



Metabolic network on Boolean model
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• For Reaction 1, Compounds A and B are necessary.
→  R1 = A ∧ B

• For Reaction 2, Compounds C and D are necessary.
→  R2 = C ∧ D

• Reactions can be represented by “AND” nodes.
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• Compound E is producible if Reaction 1 or 2 occurs.
→  E = R1 ∨ R2

• Compound F is producible if Reaction 2 or 4 occurs.
→  F = R2 ∨ R4

• Compounds can be represented by “OR” nodes.

Metabolic network on Boolean model
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•Thus, a metabolic network can be represented by a 
directed graph in which each node is labeled by either 
“AND(∧) (Reaction)” or “OR(∨) (Compound)”.

•All adjacent nodes of “AND” nodes are “OR” nodes
•All adjacent nodes of “OR” nodes are “AND” nodes.
•“Negation”s do not exist. 

Metabolic network on Boolean model
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• Nodes with indegree 0 are called source nodes

• Source nodes are always assigned 1, assuming
that they are provided by external environment.

Metabolic network on Boolean model



Boolean Reaction Cut Problem

• Which reactions should be deleted so that

the target compound becomes unproducible?

(A,B,C, and F are always assigned 1.)
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Minimum Boolean Reaction Cut Problem

• Which reactions should be deleted so that
the target compound becomes unproducible?

- Reaction 2 and 3:     two reaction deletion

- Reaction 1:  one reaction deletion



- Detection of such a reaction cut has potential   
application to drug design.

- This problem is known to be very complex, (NP-
complete).                    (Tamura et al. 2010)

- For this problem, we developed an integer linear
programming (ILP)-based method which can   
handle large scale networks.

Minimum reaction cut problem



maximize 2x + 5y -3z 
subject to  3a – x < 2b + 4y

y + 2z = 3x +c 
2x + 5c > 3a

Linear Programming (LP)

Example

- An objective function and constraints must be 
represented by linear function of variables.

- Linear Programming is efficiently solvable.



maximize 2x + 5y -3z 
subject to  3a – x < 2b + 4y

y + 2z = 3x +c 
2x + 5c > 3a
x,y,z are integers.

(Mixed) Integer Linear Programming (ILP, MILP)

Example

- An objective function and constraints must be represented
by linear function of variables.

- Solving ILP or MILP is NP-complete problem.

- CPLEX is an efficient ILP solver.
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Linear representation of Boolean AND



Representing Boolean “AND” by linear constraints

𝑦 = 𝑥1 ∧ 𝑥2 ∧ …∧ 𝑥𝑘

𝑦 ≤
1

𝑘
( 𝑥1 + 𝑥2 + …+ 𝑥𝑘 )

𝑦 ≥ 𝑥1 + 𝑥2 + …+ 𝑥𝑘 − (𝑘 − 1)

If all x are 1, 

y ≧ 1  and  y ≦ 1 must be satisfied  →  y=1

If some x is 0,

y ≧ 0    and  y ≦ 0.zzz must be satisfied → y=0

x and y are binary

To represent BN related problems by ILP
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Linear representation of Boolean OR



Representing Boolean “OR” by linear constraints

𝑦 = 𝑥1 ∨ 𝑥2 ∨ …∨ 𝑥𝑘

𝑦 ≥
1

𝑘
( 𝑥1 + 𝑥2 + …+ 𝑥𝑘 )

𝑦 ≤ 𝑥1 + 𝑥2 + …+ 𝑥𝑘

If all x are 0, 

y ≦ 0  and  y ≧ 0 must be satisfied  →  y=0

If some x is 1,

y ≦ 1 and  y ≧ 0.zzz must be satisfied → y=1

x and y are binary

To represent BN related problems by ILP…
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Compound 1
(C1)

Compound 2
(C2)

Reaction 1
(R1)

Inactivated
(represented by E1=0)

∧

Compound 1
(C1)

Compound 2
(C2)

Reaction 1 (R1)

The reaction R1 can be represented by
R1 = C1∧ C2∧ E1,
and it is transformed into

R1 + (1-C1) + (1-C2) + (1-E1)≧ 1

(1-R1) + C1≧ 1

(1-R1) + C2≧ 1

(1-R1) + E1≧ 1.

Not inactivated
(represented 
by E1=1)

ILP for Minimum Boolean Cut



The compound C8 can be represented by
C8 = R2∨ R3,
and it is transformed into

(1-C8) + R2 + R3≧ 1

C8 + (1-R2)≧ 1

C8 + (1-R3)≧ 1.

∨

Reaction 2
(R2)

Reaction 3
(R3)

Compound 8
(C8)

ILP for Minimum Boolean Cut



- To minimize the number of deleted reactions,
the objective function is  “Maximize E1 + E2 + E3.”

- The necessary constrains are
- C8 = 0  
- The linear constraints for C2,C4,C5,C7,R1,R2,R3.
- C1=C3=C8=1  

Example for solving Boolean reaction by ILP



- If 0 is assigned to every node included in the   
directed cycle, the target compound becomes 
non-producible even when no reaction is deleted. 
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Inappropriate solution due to directed cycle



- We assume that 1 is assigned to every node
in the initial state.

- Maximal valid assignment corresponds to the
solution for this problem setting. 
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Solutions depend on initial states
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Maximal valid assignment

1

1 1

0
0

reaction

compound

Valid assignmentmaximal valid assignment

1
1

1

1

1

1

1

1 1

0
0

With directed cycle
→multiple valid assignments

If the number of 1s is maximal in a valid assignment,
it is called a maximal valid assignment. 

Source node
→ indegree = 0



- For example, the constraints for C8 can be 

represented as

{1-C8(t+1)} + R2(t) + R3(t)≧ 1

C8(t+1) + {1-R2(t)}≧ 1

C8(t+1) + {1-R3(t)}≧ 1

Notion of time
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Compound 2
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Reaction 1
(R1)

Inactivated
(represented by E1=0)
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Compound 1
(C1)

Compound 2
(C2)

Reaction 1 (R1)

Then, R1 = C1∧ C2∧ E1 
becomes  R1(t) = C1(t-1)∧ C2(t-1)∧ E1(0).

This is further transformed into the following inequalities:
R1 (t)+ {1-C1(t-1)} + {1-C2(t-1)} + {1-E1(0)} ≧ 1

{1-R1(t)} + C1(t-1)≧ 1

{1-R1(t)} + C2(t-1) ≧ 1

{1-R1(t)} + E1(t-1) ≧ 1

Not inactivated
(represented 
by E1=1)

Notion of time



- The objective function:
Maximize E1(0) + E2(0) + E3(0).

- Constraints:
- C8(m+n) = 0;     m:#compounds, n:#reactions  
- linear inequalities for C2,C4,C5,C7,R1,R2,R3
- C1(0)=C3(0)=C8(0)=1  



- If the notion of time is used, #variables in ILP is 𝑂 𝑚 + 𝑛 2 .

- Computational time for solving ILP is said to be proportional to
an exponential function of #variables.

- Therefore it is not applicable to large networks.

Computational time of ILP



- If the notion of time is not used, #variables in ILP

is 𝑂 𝑚 + 𝑛 .

- The notion of time is necessary to uniquely 

determine

the solution, because directed cycles may result in 

multiple solutions of ILP.

- Feedback vertex set

- Removal of FVS makes the original network 

acyclic.

Speedup using feedback vertex set (FVS)



Speedup using feedback vertex set (FVS)

- Each vertex in FVS is divided into two vertecies.
- One node has only inedges. (Type１)
- The other node has only outedges. （Type２）

- Time advances only when the value of Type1 node is 
copied to Type2 node.



The FVS-based method decreases #variables in ILP
from 𝑂((𝑚 + 𝑛)2) to 𝑂 𝑓 𝑚 + 𝑛 .

(𝑓 :the size of FVS)  

Finding the minimum FVS is an NP-complete problem,
but it is not necessary to find the minimum one.

Speedup using feedback vertex set (FVS)



Computational experiment

• We applied our method for E. coli metabolic network 
consisting of Glycolysis/gluconeogenesis (00010), 
Citrate cycle (00020) and Pentose phosphate 
pathway (00030) of KEGG database.

• Pyruvate (C00022), Acetyl-CoA (C00024), 
Acetate(C00033), Oxaloacetate (C00036) and 
Phosphoenolpyruvate (C00074) were used as target 
compounds. 



•Target compound

Oxaloacetate

(C00036) 

Example

•Detected reactions

R00351

R01518

R02570



Computer experiment

• R00351 is necessary for starting the TCA cycle.

• R01518 is included in the Embden-Meyerhof (EM) 
pathway generating phosphoenol pyruvate (C00074) 
from glycolysis.

• R02570 is related to generate Succinyl-CoA
(C00091), Succinate (C00042), Fumarate(C00122) 
and Malate (C00149).



Computer experiment

With FVS and special 
treatment for reversible
reactions.

Although the definitions of these two problems are slightly different from
each other, we compare them to estimate the efficiency of utilizing feedback vertex sets.

A naïve method





Minimum Reaction Insertion (MRI) Problem
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Add minimum number of reactions so that

the target compound becomes producible.



Minimal Valid assignment (MinVA)
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1

1
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The 0-1 assignment calculated by the simple method

corresponds to the Minimal Valid assignment (MinVA).

MinVA has the least number of 1s among 

valid assignments.

add

add add



The objective function for BRM

Minimize   ER2 + ER3 + ER4 + ER 5





Boolean Reaction Modification (BRM) Problem
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Minimize the total number of added and removed reactions

so that the toxic(unnecessary) compound becomes non-producible

and the necessary compound becomes producible. 



Boolean Reaction Modification (BRM) Problem

Remove {r2, r3}, and add {r4, r6}. 

remove

add add

1

1

1

1

1

remove

0

0

0

1

1

1

1

1
0

1

1



The objective function for BRM

Maximize   ER1 + ER2 + ER3 – ER4 – ER 5



NP-completeness of MRI problem

Polynomial time reduction from

Minimum Vertex Cover problem





Minimum Boolean Cut for Multiple metabolic networks

Finding minimum reaction cut to make the target compound 
producible in N1 and non-producible in N2. 



NP-completeness of BRM

Illustration of the polynomial time reduction form

Hitting Set Problem (HSP) with

{1,2},{1,3},{2,3},{1,4},{3,4}.

Since BRM is NP-complete, we develop an Integer Linear

Programming-based method.
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Boolean network (BN) and Singleton Attractor

Singleton

attractor

Singleton

attractor

- A singleton attractor corresponds to the state of the cell.

- Ex. Normal cell or cancer cell



Representing “AND” by linear constraints

For example, a Boolean function is      

in DNF

Representing “OR” by linear constraints



Solving Attractor Detection by ILP (Akutsu et al. 2012)

(dummy function)



Given 1

as a control node

0 1

∧

Attractor control for single BN

- Suppose that we can control some nodes

- Which nodes should be controlled?

- What value should be assigned?

- How the result should be evaluated?



Score function

α … score for each node.

w … whether each node is chosen as a control node

Given 1

as a control node

0 1

v1 = 1 :  control node → score = 0

v2 = 0 : score = α2 ×0 = 2 ×0 = 0 

v3 = 1 : score = α3 ×1 = 3 ×1 = 3

Suppose that α1=1, α2=2, α3=3.

Total score=3

∧

Attractor control for single BN



Given 0

as a control node

There are two singleton attractors 

when v2 is controlled and given 0.

Given 0

as a control node
Given 0

as a control node

∧

∧ ∧

0

0

1

1

Attractor control for single BN



Given 0

as a control node
Given 0

as a control node

∧ ∧

0

0

1

1

Score = 0 + 0 = 0 Score = 1 + 3 = 4

Given 1

as a control node

0 1

∧

Score = 0 + 3 = 3

If m=1 and θ=2, then v1=1 can be a solution, but v2=0 is not.

Choose m control nodes with the minimum 

score of singleton attractors greater than θ



∧ ∧

Problem 3: Simultaneous Attractor Control (SAC)

N1 for cancer cells N2 for normal cells

α, β … score for each node.

w … whether each node is chosen as a control node

Suppose that α1=1, α2=2, α3=3

and β1=-3, β2=-1, β3=-2.



If v1=0 → N2 has no singleton attractor.

If v1=1 → score  4-3  1

If v2=0 → score  0+0 or 4+0                  0

If v2=1 → score  2-1 or 2-6 -4

if v3=0 → score  2-1 1

If v3=1 → score  4-5 -1

Problem 3: Simultaneous Attractor Control (SAC

∧ ∧

N1 for cancer cells N2 for normal cells

Sum of the minimum scores of singleton attractors is used for evaluation.



ILP for Simultaneous Attractor Control (SAC)

∧ ∧

- Variables for control nodes and the other nodes

- Representing by linear constraints



Score function for N1 Score function for N2

ILP for Simultaneous Attractor Control (SAC)

∧ ∧

- Representing by linear constraints



If v1=0 → N2 has no singleton attractor

If v1=1 → score  4-3 

If v2=0 → score  0+0 or 4+0

If v2=1 → score  2-1 or 2-6                  

if v3=0 → score  2-1

If v3=1 → score  4-5

∧ ∧

- Firstly, find the maximum score. V2=0 (score=4) is found.

- Then, under the condition of v2=0, ILP calculates the 

minimum score. → the minimum score (=0) < θ

An example of SAC for m=1 and θ=0.5



Summary

- Boolean network as gene regulatory network
- Exact exponential time algorithms for detecting singleton

attractors of AND/OR BNs.
- The algorithms are based on combinations of effective 0/1 

assignment, SAT-based algorithm, and exhaustive search 

- Boolean network as metabolic network
- Integer linear programming(ILP)-based methods have been

introduced for several optimization problems
- These problems are NP-complete.
- Feedback vertex sets were used to reduce # variables in ILP.
- Considering maximal valid assignment and minimum valid 

assignment is effective.


