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AND/OR Boolean network (AND/OR BN)

- Mathematical model of genetic network
« Very simple model
- Each node takes either O or 1.
- Node — gene
- 1 — active, 0 — inactive
- States of nodes change synchronously
- According to regulation rules (= Boolean functions)

AND/OR BN w AND/OR BN
L {x; Regulation rules are limited
/ to disjunction or conjunction

| of parent nodes.
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Example of AND/OR BN
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Gene Activity Profile (GAP)

[v1,v2,v3] =[0,0,1]
~ l -
10,0,0.
-~ l -
10,1,0.
- l -
11,1,0.
11D
e
I . s
(00— C010)— (110D
001> (01D «—C1oD

|

-"’-'-T_ e
Qo0




What is a singleton attractor?
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- [V1, V2, V3]=[1, 1, 0] — a singleton attractor
- The state of [1,1,0] never changes.
- [1,1,0] has a self-loop in the state-transition.

- One of the most stable states
- play an important role in biological systems




Cyclic attractor
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- [0,1,0]—[1,1,0]—[1,0,0]—[0,1,1]
- An attractor with period 4
(cyclic attractor)

- [1,1,0]

- An attractor with period 1
(singleton attractor)

- In this talk, we deal with only singleton attractors.




O(1.787") time algorithm (Tamura and Akutsu, 2009)

(1) assign values to all nodes
@2 consistency checking

Singleton attractor
—values of nodes never change.

(@\

The consistency checking can
be done in O(n?) time.

Consistency checking for node d
-d=1 — OK
-d=0 — contradiction

Since the main algorithm
takes exponential time,
we can ignore the time for
consistency checking.




O(1.787") time algorithm (Tamura and Akutsu, 2009)

(1 assign values to all nodes
@ consistency checking

0
a A LA . .
If all assighment are examined,
it takes ©O(27) time.

' A%
(5. s -
C / g If (b,d)=[1,0], the value of
d changes from 0 to 1.

@ — 0 f It contradicts the condition
€ of a singleton attractor.

//'i For every node pair, the number

h of assignments which we have
to examine is at most 3 of 4

assignments

By using this fact, we can
reduce the computational time.




When K nodes are assigned, the number
of cases are bounded by

f(K)=3-f(K-2), f(2)=3.

Then, f(K) is O(35/2), which is at most O(1.733%).

STEP 1 of the proposed algorithm

Initial state:
All nodes are non-assigned

While there exists

a non-assigned edge (u,v),
examine all possible

3 assignments on (u,v).

Possible assighments for
(b,d) are [0,0], [0,1] and [1,1].
Note that [1,0] is not allowed.

Possible assighments for
(f,i) are [0,1], [1,0] and [1,1].
Note that [0,0] is not allowed.

(lﬁ\



STEP 2

already
assigned

Let W be nodes whose
values have not been
determined yet.

If [W| = n-an,
examine all possible
assignments on W

For example,
a,c,g,h W

already
determined
All 2* assignments for a,c,g,h

h asined are examined if STEP2 is
executed.

If STEP 2 is executed, the computational time is
at most O(27"—K . 1.733K),




STEP 3

If IW|>n-an,
solve a SAT problem.

If (b,d)=[0,1] is assigned,
(aVg)aVe)=1
must be satisfied.

If (f,i)=[1,1] is assigned,
(cVegVh)(gVh)=1
must be satisfied.

When K nodes are assigned,
@ the condition of a singleton
h i attractor can be represented

(7 |by at most K clauses.

SAT problem with K clauses can be solved in 6(1.234K) time.
where O(f(m)) means O(f(m)poly(m,n)) . (Yamamoto, 2005).

—the overall computational time is bounded by O(1.234% . 1.733%) .



Theorem

The detection of a singleton attractor can he done
in O(1.792)-time for AND/OR BNs. (worst case)

After STEP1
if lw|=n-an,
then STEP 2 is executed.

the computational time is O(27—% . 1.733K)

else, STEP 3 is executed.

the computational time is O(1.234% . 1.733%)

By setting K=0.767n (a=0.767),
2n—U.?6?-r1 ) ]”7330.?6?-?1 < l"_g?n
1+234U.T”6?-r1 ) 1;33{].?6?” < 1792”'

are obtained.




Improved analysis

In the previous analysis,

the number of SAT clauses constructed in STEP 1
is estimated as same as

the number of assigned nodes in STEP 1.

However, there are cases in which SAT clauses are not constructed.

example

(V1V VoV Vy)
is added.

When 0 is assigned to v4, When 1 is assigned to v4,
no SAT clauses are constructed a SAT clause is constructed.




Improved analysis
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By examining all cases, it can be observed that the worst case

for the number of constructed SAT clause is

- One of the three assignments add 2 clauses.
- Two of the three assignments add 1 caluse.




Theorem

Detection of a singleton attractor can be done
in O(1.787") -time for AND/OR BNs.

After STEP1
if lw|=n-an,
then STEP 2 is executed.

the computational time is O(2»—& . 1.733%) .

else, STEP 3 is executed.

the computational time is O(2.089%) .

By setting K=0.7877n (a=0.7877),
gn—0-T87Tn 1 7330787 1 7866"
2.089"- 7877 < 1.7866"
are obtained.




0(1.787") time algorithm (Tamura and Akutsu,2009)

examine 3 possible
assignments

Is there a singleton attractor
in a given Boolean network?

If all assignment are examined,
it takes O(2™) time.

The consistency checking can
be done in polynomial time.

If (b,d)=[1,0], the value of
d changes from O to 1.

It contradicts the condition
of a singleton attractor.

Determined
indirectly

h examine 3 possible By using this fact, we reduced
assignments the computational time in the

The consistency checking can previous algorlthm'

be done in polynomial time.



More improved algorithm

examine at most 5 ,,f ~
possible assignments ;f {

ilr -. ] ~ -..-.--‘: — -:-I:--'--'---:-.- - l.."-—. IIII
examine 3 possuble .a_ (. Cm /‘4

A etermined
assignments indirectly

While there exist non-assigned neighboring edges,
examine all possible assignment, which are at most 5.

For example, possible assignments for (e,i,j) are
[0,0,0],[0,0,1],[1,0,0],[1,0,1],[1,1,1]
since [0,1,0],[0,1,1],[1,1,0] are impossible assignments.




Theorem

The detection of a singleton attractor can be done
in O(1.774™) -time for AND/OR BNs.

After STEP1
if K>0.767(n-L),
then STEP 3 is executed.

the computational time is O(2"~* % . 1.71% . 1.733%)

else if STEP 4 is executed.

the computational time is O(1.234% - 1.71% . 1.733%)




Improved analysis

There are cases where SAT clauses are not constructed.
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The worst case is as follows:
(1) One of the five assignments adds one clause.
(2) Three of the five assignments add two clauses.
(3) One of the five assignments adds three clauses.




Theorem

| The detection of a singleton attractor can be done |
in O(1.757") -time for AND/OR BNs.

After STEP1
if K>0.8286(n-L),
then STEP 3 is executed.

the computational time is O(2" %% . 1.71% . 1.733%)

else if STEP 4 is executed.

the computational time is O(1.234" - 1.71% . 1.733%)




Information Processing Letters 110 (2010) 565-569

- - - - L

Contents lists available at ScienceDirect %
Information
Processing Letters

Information Processing Letters

www.elsevier.com/locate/ipl

Determining a singleton attractor of an AND/OR Boolean network
in O(1.587™) time

Avraham A. Melkman?, Takeyuki Tamura >*, Tatsuya Akutsu®

4 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84105
b Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan 611-0011

AR TI'C L'E ‘I'N:E O

Article history:

Received 31 January 2010

Received in revised form 16 April 2010
Accepted 3 May 2010

Available online 8 May 2010
Communicated by M. Yamashita

Keywords:
Algorithms

SAT

Boolean network
Singleton attractor




Integer linear programming—based methods
for controlling Boolean metabolic networks

Takeyuki Tamura

Bioinformatics Center,
Institute for Chemical Research
Kyoto University



Models of metabolic networks

— Mathematical model

— Ordinary differential equation (ODE) model
high explanatory power, but needs many parameters,
often used for small models

— Flux balance analysis (FBA) model
assumes a steady state, often used for genome—scale
model, good for optimizing production of biomass

- Elementary mode (EM) model,
less explanatory power, good for checking the
produciblity of biomass

— Boolean model
Every node is assigned either O or 1.
Simple model, but good for logical analysis



Metabolic network on Boolean model

Reaction 1 Reaction 3

Compound A (V E

Compound B V/
Compound C (V / F Reaction 4
Compound D V/

Reaction 2

— Every node is assigned either O or 1.
— For reactions,
1: can takes place, 0: cannot take place.
— For compounds,
1: producible, exist, 0: not producible, not exist




Metabolic network on Boolean model

Reaction 1 Reaction 3

Compound A V\ E
Compound B (V — Y
Compound C V\ /F Reaction 4
Compound D (V G

Reaction 2

 For Reaction 1, Compounds A and B are necessary.

— R1=A A B
 For Reaction 2, Compounds C and D are necessary.
— R2=C A D

* Reactions can be represented by “AND” nodes.




Metabolic network on Boolean model

Reaction 1 Reaction 3

Compound A V\ E

A N
Compound B (V — Y
Compound C V\ / F Reaction 4
Compound D (V 8

Reaction 2

e Compound E is producible if Reaction 1 or 2 occurs.
— E=R1 V R2

e Compound F is producible if Reaction 2 or 4 occurs.
— F=R2 V R4

« Compounds can be represented by “OR” nodes.




Metabolic network on Boolean model

*Thus, a metabolic network can be represented by a
directed graph in which each node is labeled by either
“AND(A) (Reaction)” or “OR(V) (Compound)”.

All adjacent nodes of “AND” nodes are “OR” nodes
*All adjacent nodes of “OR” nodes are “AND” nodes.
*“Negation”s do not exist.

Reaction 1 Reaction 3

Compound A (V. ~__ E

A N
Compound B (V — Y
Compound C V\ / F Reaction 4
Compound D (V G

Reaction 2




Metabolic network on Boolean model

Reaction 1 Reaction 3

Compound A V\ E

Compound B V/
Compound C (\/ / F Reaction 4
Compound D V/

Reaction 2

 Nodes with indegree O are called source nodes

e Source nodes are always assigned 1, assuming
that they are provided by external environment.




Example

A

Boolean Reaction Cut Problem

V reaction 1

\

\ / \% V mactn?/

C

F

|nact|vate

V reactl n2

v//\\

V /reactlon 3

target
compound

* Which reactions should be deleted so that
the target compound becomes unproducible?

(AB,C, and F are always assigned 1.)




Minimum Boolean Reaction Cut Problem

Example C V reaction 2

|nact|vate
target

A reactf)n 1 //\ compound

oty

reactlon 3

Which reactions should be deleted so that
the target compound becomes unproducible?
— Reaction 2 and 3: two reaction deletion

— Reaction 1: one reaction deletion




Minimum reaction cut problem

— Detection of such a reaction cut has potential
application to drug design.

— This problem is known to be very complex, (NP-
complete). (Tamura et al. 2010)

— For this problem, we developed an integer linear
programming (ILP)-based method which can
handle large scale networks.



Linear Programming (LP)

Example

maximize 2x + 9y —3z

subject to 3a — x < 2b + 4y
y + 2z = 3x +c
2x + 5c > 3a

— An objective function and constraints must be
represented by linear function of variables.

— Linear Programming is efficiently solvable.




(Mixed) Integer Linear Programming (ILP, MILP)

Example

maximize 2x + 9y -3z

subject to 3a — x < 2b + 4y
y + 2z = 3x +c
2x + 5c > 3a

X,y,z are integers.

— An objective function and constraints must be represented
by linear function of variables.

— Solving ILP or MILP is NP—-complete problem.

— CPLEX is an efficient ILP solver.




Linear representation of Boolean AND

Xl — X2 N\ X3 /N aao /N Xk Not applicable

(X VX, Voo VX ) AOGV X)) A A (X VX ) =1

Not applicable

X, +(1-X,)+...+(1-x,)=>1
(1-x)+x,2>1

a—xg%xk21

Linear

inequalities
Xl’ X2 preey Xk = {0’1} Applicable !



To represent BN related problems by ILP

Representing Boolean "AND” by linear constraints

Y= x{ A X3 A o\ Xp,

y =+ x,+ .+ x) —(k—1)
1
Yy SE (x1+ xZ‘l‘ . xk)
X and y are binary

If all x are 1,
y =2 1 and y = 1 must be satisfied — y=1

If some x is O,
y =2 0 and y = 0.zzz must be satisfied — y=0



Linear representation of Boolean OR

Xl — X2 V X3 V..V Xk Not applicable

X VX Vo VXY A VXY A A (X v X ) =1
1 VA K 1 VA 1 VA

Not applicable

1-Xx)+X, +...+% =1
X, +(1—-x%,)>1

x1+(1—'xk)21

Linear

inequalities
Xl’ X2 ety Xk = {0’1} Applicable !



To represent BN related problems by ILP...

Representing Boolean "OR” by linear constraints

y=x1V XV .V Xp

Yy <x1+ x, + ...+ Xxp

1
y ZE(xl‘l‘ xZ‘l‘ + xk)

X and y are binary

If all x are O,
y = 0 and y = 0 must be satisfied — y=0

If some x is 1,
y =1 and y = 0.zzz must be satisfied — y=1



ILP for Minimum Boolean Cut

Compound 1 Reaction 1 Compound 1 |
(C1) (R1) (C1) Reattion 1 (R1)

Not inactivated Inactivated
Compound 2 (represented Compound 2 (represented by E1=0)
(C2) by E1=1) (C2)

The reaction R1 can be represented by

R1=C1 A C2 A E1,
and it is transformed into
R1+ (1-C1)+ (1-C2) + (1-E1) = 1
(1-R1)+C1 21
(1-R1) + C2 1
(1-R1) + E1 = 1.

V1V



ILP for Minimum Boolean Cut

Reaction 2 Compound 8
(R2) (C8)
\V
/

Reaction 3
(R3)

The compound C8 can be represented by
C8 =R2 V R3,
and it is transformed into
(1-C8)+ R2+R3 =1
C8+(1-R2) = 1
C8 + (1-R3) = 1.



Example for solving Boolean reaction by ILP
Ve, SOLZS;O\ T2 () ey
O Ve, /
sOurc\ Vr, /O

SO )
&/

- To minimize the number of deleted reactions,
the objective function is “Maximize E1+E2 +E3”

- The necessary constrains are
-C8=0
- The linear constraints for C2,C4,C5,C7,R1,R2,R3.
- C1=C3=C8=1



Inappropriate solution due to directed cycle

0
AV Source—/ T
C1

N 1 Vo /
4
Sourc\ vl‘l /,/’QO

Ve 2 0) v
/”OO/ \085
\ - \

Vs O

Source 1

— If O is assigned to every node included in the
directed cycle, the target compound becomes
non—producible even when no reaction is deleted.



Solutions depend on Initial states

- #_—-'-ff___'

VCB 1 Vr VC
AV Sourceo\ 2 7
C1 1

:
\sf
®
\
/

G
\%s; 60;_,;«*

We assume that 1 is assigned to every node
In the initial state.

Maximal valid assignment corresponds to the
solution for this problem setting.




source node Maximal valid assignment = reaction
- indegree =0 O compound
Vr:l 1 Vcl 1
O Source O Source
With directed cycle |
1 | —>multiple valid assignments 1
Vr, VI,

maximal valid assignment Valid assignment

If the number of 1s is maximal in a valid assignment,
It i1s called a maximal valid assignment.



Notion of time

\%Z V-
SourSeBO\ ot . O VC7

- For example, the constraints for C8 can be
represented as
{1-C8(t+1)} + R2(t) + R3(t) =2 1
C8(t+1) + {1-R2(1)} = 1
C8(t+1) + {1-R3(t)} = 1



Notion of time

Compound 1 Reaction 1 Compound 1 |
(C1) (R1) (C1) Reattion 1 (R1)

Not inactivated Inactivated
Compound 2 (represented Compound 2 (represented by E1=0)
(C2) by E1=1) (C2)

Then,R1=C1 A C2 A E1
becomes R1(t) = C1(t-1) A C2(t-1) A E1(0).

This is further transformed into the following inequalities:
R1 (t)+ {1-C1(t-1)} + {1-C2(t-1)} + {1-E1(0)} = 1
{1-R1()} + C1(t-1) = 1
{1-R1()} + C2(t-1) = 1
{1-R1)}+ E1(t-1) = 1




- The objective function:
Maximize E1(0) + E2(0) + E3(0).

- Constraints:
- C8(m+n) =0; m:#compounds, n:#reactions
- linear inequalities for C2,C4,C5,C7,R1,R2,R3
- C1(0)=C3(0)=C8(0)=1



Computational time of ILP

vC'1
O

Souré;\\\\x‘

Ve

1&36(:>#f,#fﬁ* /’“\\

Source

— If the notion of time is used, #variables in ILP is O((m + n)z).

— Computational time for solving ILP is said to be proportional to
an exponential function of #variables.

— Therefore it is not applicable to large networks.



Speedup using feedback vertex set (FVS)

- |f the notion of time Is not used, #variables in ILP
IS O(m + n).

- The notion of time Is necessary to uniquely
determine
the solution, because directed cycles may result in
multiple solutions of ILP.

- Feedback vertex set
- Removal of FVS makes the original network
acyclic.



Speedup using feedback vertex set (FVS)

e Vr, ~ Ve,

Source 'M_/'h"“"---q.___‘ T
VCI : .\ b

P

e
'\._h_ X VC‘J;'"‘\_‘/
Source Ly \
\ Ve
. 8
VC 2 v oy v //f Target
- T Us 1 Cs /

.-'/P- I\-h __/":. Iﬁ—\:
:: O~ . /
\ vcﬁ.i j:-------------r\_lé .
Eource /
\Hax .-FH-___...-"
h o

— Each vertex in FVS is divided into two vertecies.
— One node has only inedges. (Type1)
— The other node has only outedges. (Type2)

— Time advances only when the value of Typel node is
copied to Type2 node.



Speedup using feedback vertex set (FVS)

v{_‘,’j/" \

v, Source )

cd_r-"-\

Ci

Source
VC; /’I—I

_blr’”'“\.

6\

Source

VC.‘ s “x

Vr 2 VC?

SRR

\ Ve
o -
xf Target
/

The FVS—based method decreases #variables in ILP
from O((m + n)?) to O(f (m + n)).

(f the size of FVS)

Finding the minimum FVS is an NP—-complete problem,
but it is not necessary to find the minimum one.



Computational experiment

- We applied our method for £. co/f metabolic network

consisting of Glycolysis/gluconeogenesis (00010),
Citrate cycle (00020) and Pentose phosphate
pathway (00030) of KEGG database.

Pyruvate (C00022), Acetyl-CoA (C00024),
Acetate(C00033), Oxaloacetate (C00036) and

Phosphoenolpyruvate (C00074) were used as target
compounds.
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Computer experiment

e RO0351 is necessary for starting the TCA cycle.

« R0O1518 is included in the Embden—Meyerhof (EM)
pathway generating phosphoenol pyruvate (C00074)
from glycolysis.

e RO02570 is related to generate Succinyl-CoA
(C00091), Succinate (C00042), Fumarate(C00122)
and Malate (C00149).



Computer experiment

Target Computational time | Computational time Ratio
compound for MetaboRobust for MetaboRobustII
C00022 10.15s 0.23s 4413
C00024 46.88s 4.39s 10.68
C00033 49.93s 4955 10.09
C00036 42.62s 491s 8.68
C00074 65.62s 0.45s 145.82
MetaboRobustAll 39.28s 5.15s 7.63
Number of variables in IP 40698 3263 12.22

Although the definitions of these two problems are slightly different from
each other, we compare them to estimate the efficiency of utilizing feedback vertex sets.

Target Indegree mactivated reactions mactivated reactions
compound for MetaboRobust for MetaboRobustIl
Coo022 2 RO0200,B05605 RO0200. R05605
C00024 4 R0O0235,F00354 R01323 R0O2569 R0O0351. RO7618
C00033 2 R00235 R00362 RO0351. ROO7618
C00036 4 R00341 R00342 R00354 R00362 RO0351. RO1518, RO2570
C00074 2 R0O0341 R00658 R0O0341, RO1518
MetaboRobustAll R00235.R00341 R00342 R00354 R00362. | R0O0351.R0O1518 R0O2570 R05605
R0O0658 R01323 R02569 R05605

A naive method

With FVS and special
treatment for reversible
reactions.
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Finding Minimum Reaction
Cuts of Metabolic Networks
Under a Boolean Model
Using Integer Programming
and Feedback Vertex Sets

Takeyuki Tamura, Kyoto University, Japan
Kazuhiro Takemoto, University of Tokyo, Japan
Tatsuya Akutsu, Kvoto University, Japan

ABSTRACT

In this paper, the authors consider the problem of, given a metabolic network, a set of source compounds and
a set of targer compounds, finding a minimum size reaction cut, where a Boolean madel is used as a model
of metabolic networks. The problem has potential applications to measurement of structural robusmess of
metabolic networks and detection af drug targets. They develap an integer programming-based method for
this optimization problem. In order to cope with cyvcles and reversible reactions, they further develop a novel
integer programming (IP) formalization method using a feedback vertex set (FVS). When applied to an E. coli
metabolic network consisting of Glveolysis/Glyconaogenesis, Citrate cycle and Pentose phosphate patiway
obtained from KEGG database, the FVS-based method can find an aptimal set of reactions to be inactivated
much faster than a naive IP-based method and several times faster than a flux balance-based method. The
authors also confirm that our proposed method works even for large networks and discuss the biological
meaning of our results.

Eeywords: Metabalic Network, Reaction Cut, Flux Balance, Robustness, Integer Programming




Minimum Reaction Insertion (MRI) Problem

Add minimum number of reactions so that
the target compound becomes producible.



Minimal Valid assignment (MinVA)

The 0-1 assignment calculated by the simple method
corresponds to the Minimal Valid assignment (MinVA).

MInVA has the least number of 1s among
valid assignments.



The objective function for BRM

Minimize ER2 + ER3+ ER4 + ER 5
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Integer Programming-Based Method for Designing
Synthetic Metabolic Networks by Minimum Reaction
Insertion in a Boolean Model

Wei Lu'®, Takeyuki Tamura'®, Jiangning Song?®3, Tatsuya Akutsu'*
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Abstract

In this paper, we consider the Minimum Reaction Insertion (MRI) problem for finding the minimum number of additional
reactions from a reference metabolic network to a host metabolic network so that a target compound becomes producible
in the revised host metabolic network in a Boolean model. Although a similar problem for larger networks is solvable in a
flux balance analysis (FBA)-based model, the solution of the FBA-based model tends to include more reactions than that of
the Boolean model. However, solving MRI using the Boolean model is computationally more expensive than using the FBA-
based model since the Boolean model needs more integer variables. Therefore, in this study, to solve MRI for larger
networks in the Boolean model, we have developed an efficient Integer Programming formalization method in which the
number of integer variables is reduced by the notion of feedback vertex set and minimal valid assignment. As a result of
computer experiments conducted using the data of metabolic networks of E. coli and reference networks downloaded from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we have found that the developed method can
appropriately solve MRl in the Boolean model and is applicable to large scale-networks for which an exhaustive search does
not work. We have also compared the developed method with the existing connectivity-based methods and FBA-based
methods, and show the difference between the solutions of our method and the existing methods. A theoretical analysis of
MRl is also conducted, and the NP-completeness of MRl is proved in the Boolean model. Our developed software is available
at "http://sunflower.kuicr.kyoto-u.ac.jp/~rogi/minRect/minRect.html.”
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Boolean Reaction Modification (BRM) Problem

host network
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Minimize the total number of added and removed reactions
so that the toxic(unnecessary) compound becomes non-producible
and the necessary compound becomes producible.



Boolean Reaction Modification (BRM) Problem

host network
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The objective function for BRM

Maximize ER1+ ER2 +ER3-ER4-ERS
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NP-completeness of MRI problem
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Computing Minimum Reaction Modifications
in a Boolean Metabolic Network

Takeyuki Tamura

, Wei Lu, Jiangning Song

, and Tatsuya Akutsu

Abstract—In metabolic network modification, we newly add enzymes or/fand knock-out genes to maximize the biomass production with
minimum side-effect. Although this problem has been studied for various problem settings via mathematical models including flux
balance analysis, elementary mode, and Boolean models, some important problem settings still remain to be studied. Inthis paper, we
consider the Boolean Reaction Modification (BRM) problem, where a host metabolic network and a reference metabolic network are
given in the Boolean model. The host network initially produces some toxic compounds and cannot produce some necessary
compounds, but the reference network can produce the necessary compounds, and we should minimize the total number of removed
reactions from the host network and added reactions from the reference network so that the toxic compounds are not producible, but the
necessary compounds are producible in the resulting host network. We developed integer linear programming (ILP}-based methods for
BRM, and compared them with OptStrain and SimOptStrain. The results show that our method performed better for reducing the total
number of added and removed reactions, while OptSirain and SimOptStrain performed better for optimizing the production of the target
compound. Qur developed software is freely available at “http://sunflowerkuicrkyoto-u.ac.jp/~rogi/sclBRM/solBRM.html".

Index Terms—metabolic network, algorithm, integer linear programming, Boolean model, flux balance analysis, feedback vertex set

1 INTRODUCTION

MATHEMATICAL modeling of metabolic networks often
consists of two phases, construction and completion
[1]. The construction phase infers a metabolic reaction list
from annotated genome sequence, while the completion
phase converts the reaction list, associated nutrient, secre-
tion, and biomass metabolite sets into a mathematical
model. For small networks, ordinary differential equation
(ODE) models are often used as they have a detailed explan-
atory power. However, it is difficult to obtain detailed
kinetic parameters for the ODE model for larger networks.
Therefore, flux balance analysis (FBA) models are often
used for genome-scale metabolic networks.

Many gap-filling and orphan-filling techniques have
been developed for the completion phase of the FBA model
[2]. Gap occurs when the reaction that consumes or produ-
ces a particular metabolite is completely unknown. Orphans
occur when a particular reaction is known to occur, but it is

An algorithm called Biochemical Network Integrated
Computational Explorer (BNICE) identifies all biochemical
reactions that could link two metabolites [3]. The algorithms
GapFind and GapFill are mixed integer programming
(MILP)-based algorithms that can identify each gap and
minimize the total number of gaps in the FBA model,
respectively [4]. GrowMatch uses experimentally deter-
mined gene essentiality data to identify incorrect model pre-
dictions [5]. SMILEY is another constraint-based completion
method using the relation between different nutrients and
metabolite producibility [6]. Optimal Metabolic Network
Identification (OMNI) is another MILP-based algorithm
using data of *C labeling experiments [7]. OMNI compares
experimentally measured fluxes to those predicted by FBA,
and then attempts to minimize the total difference between
the measured and predicted fluxes by adding or removing
reactions [8].




Minimum Boolean Cut for Multiple metabolic networks

Ch C3

source & Cg, source /ﬁg& CB@
ﬁ r, O )
source C’4 / i source Cé’f-w/
c,o~_ target Cé~_ T Iy : target
j W:1< T th e

6 _
\ source & / source source®? O
- C7 Cy C1o0
e (Co)
N, N

Finding minimum reaction cut to make the target compound
producible in N1 and non—producible in N2.



NP-completeness of BRM
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Since BRM is NP-complete, we develop an Integer Linear
Programming-based method.
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Computing Smallest Intervention Strategies for Multiple
Metabolic Networks in a Boolean Model

WEI LU* TAKEYUKI TAMURA** JIANGNING SONG>~ and TATSUYA AKUTSU'

ABSTRACT

This article considers the problem whereby, given two metabolic networks N, and N, a set of
source compounds, and a set of target compounds, we must find the minimum set of reactions
whose removal (knockout) ensures that the target compounds are not producible in N, but are
producible in N,. Similar studies exist for the problem of finding the minimum knockout with
the smallest side effect for a single network. However, if technologies of external perturbations
are advanced in the near future, it may be important to develop methods of computing the
minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a
well-polished model is available. However, that is not always the case. Therefore, in this article,
we study MKMN in Boolean models and an elementary mode (EM )-based model. Integer linear
programming (ILP)-based methods are developed for these models, since MKMN is NP-com-
plete for both the Boolean model and the EM-based model. Computer experiments are con-
ducted with metabolic networks of clostridium perfringens SMI101 and bifidobacterium longum
DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The
results show that larger networks are more likely to have MKMN solutions. However, solving
for these larger networks takes a very long time, and often the computation cannot be com-
pleted. This is reasonable, because small networks do not have many alternative pathways,
making it difficult to satisfy the MKMN condition, whereas in large networks the number of
candidate solutions explodes. Our developed software minFvsk(Q is available online.

Key words: algorithm, Boolean model, elementary mode, integer linear programming, metabolic
network, NP-complete




Boolean network (BN) and Singleton Attractor

U1
T 1“ + lJ = Tg[t}.
va(t + 1) = vi(t).
valt + 1) = v (t) A wvalt)

Singleton
attracto

Singleton
attractor

- A singleton attractor corresponds to the state of the cell
- Ex. Normal cell or cancer cell



For example, a Boolean functiory = o V I'g IS
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Solving Attractor Detection by ILP (Akutsu et al. 2012)

maximize T2 (dummy function)

subject to

Citigty > (St 7o () — (6= 1),
Ii,bii"'lr_'lik_ E %ijl,---,k Tb;-j {‘r'!:_f]!'
for all i € [L---n] and b;, - -- b, € {0, 1}, such that f;(b;,,--- b ) = 1,
, =0, forallie [ ---n] and b;, ---b;, € {0,1}*, such that f;(b;,,--- . b;, ) =0,
< b, by, €{0.1}F Tibay - _._fcrra]]i"-E[l---n],
IiEEEZ&, .-b; [:,:[)1”. Lib; LT
E{E} 1}, ir_ur allaF[l n]
b, €10,1},foralli € [1---n]| and bi, -~ by € {0, 1}




Attractor control for single BN

U1 Givenl
as a control node H n l] _ t}._
va(t + 1) = vi(t).
0 1 va(t +1) = t} A va(t)

U2 O J(A)Us

- Suppose that we can control some nodes
- Which nodes should be controlled?
- What value should be assigned?
- How the result should be evaluated?



Attractor control for single BN

1 Given 1
as a control node

0 1 va(t + 1) = 131{t}.f& va(t)

U2 O J(A) U3

Score function Z ;- (1 —w;) - xy

a ... score for each node.
W ... whether each node is chosen as a control node

Suppose that a1=1, a2=2, a3=3.

vl =1: control node — score =0
v2=0:score=a2 X0=2 X0=0 Total score=3
vi=1:score=a3 X1=3 X1=3



Attractor control for single BN

U1

D2 ] U3
Given 0 O '

as a control node

There are two singleton attractors
when v2 is controlled and given 0.

U1 U1
0 1

U2 O |(A)Us U2 O

Given O 0 Given O 1
as a control node as a control node

U3




Choose m control nodes with the minimum

score of singleton attractors greater than 0

U1 U1
0 1

U2 O J(A)Us U2 O |(A)Us

Given O 0 Given 0O 1
as a control node as a control node
Score=0+0=0 Score=1+3=4
U1 Givenl

as a control node

0 1 Score=0+3=3

U2 O |(A)Us

If m=1 and 6=2, then v1=1 can be a solution, but v2=0 is not.




Problem 3: Simultaneous Attractor Control (SAC)

U1 U1

U2 O : Us U2 O Us

N1 for cancer cells N2 for normal cells
Z a; - (1 —w;) - v; Z GB; - (1 — w;
a, 3 ... score for each node.

W ... whether each node is chosen as a control node

Suppose that a1=1, a2=2, a3=3
and 31=-3, 32=-1, 3=-2.



Problem 3: Simultaneous Attractor Control (SA
U1 U1

D2 O : Us U2 O Us

N1 for cancer cells N2 for normal cells

:Zﬂri-(l—uri}-yi Zﬁ 1—1'_L

If v1=0 — N2 has no singleton attractor.
If v1=1 — score 4-3 1
If v2=0 — score 0+0 or 4+0 0
If v2=1 — score 2-1 or 2-6 -4
If v3=0 — score 2-1 1
If v3=1 — score 4-5 -1

Sum of the minimum scores of singleton attractors is used for evaluation.



ILP for Simultaneous Attractor Control (SAC)

U1 U1
v O/% vs U O/% s

- Variables for control nodes and the other nodes
{ p; 1 w; =0; B { g 1 w; =0:;
i — Si = .

z If w; = z 1 w; = 1.

- Representing by linear constraints

P — Wi < < p; -+ w; ¢ —w; < S8 < q; +w;

zi — (1 —wy) <y <z + (1 —wy)|| Zi — (1 —w;) < 53 <z + (1 —wy)




ILP for Simultaneous Attractor Control (SAC)

U1 U1

U2 O : Us U2 O U3

Score function for N1 Score function for N2

ZZﬂi‘(l—u’:‘)'t’:‘ Q‘(V):Z.ﬁz"(l_w

- Representing by linear constraints

D i i Ui %= h

w; < ax; and u; <1 —w; Z
i <

(1— u.g,) and r; < (1 — s;)




An example of SAC for m=1 and 6=0.5

U1 U1

U2 O : Us U2 O Us

- Firstly, find the maximum score. V2=0 (score=4) is found

fvli=0 — N2 has no singleton attractor
fvli=1 — score 4-3

fv2=0 — score 0+0 or 4+0
fv2=1 — score 2-1or 2-6
If v3=0 — score 2-1

If v3=1 — score 4-5

- Then, under the condition of v2=0, ILP calculates the
minimum score. — the minimum score (=0) <0



Summary

— Boolean network as gene regulatory network
— Exact exponential time algorithms for detecting singleton

attractors of AND/OR BNs.

— The algorithms are based on combinations of effective 0/1

assignment, SAT—-based algorithm, and exhaustive search

— Boolean network as metabolic network

Integer linear programming(ILP)-based methods have been
introduced for several optimization problems

These problems are NP—-complete.

Feedback vertex sets were used to reduce # variables in ILP.
Considering maximal valid assignment and minimum valid
assignment is effective.



