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What is Structure-to-Function Theory for BNs?

I The structure of a Boolean network includes:

the vertex functions (fi )
n
i=1

the update mechanism (e.g., parallel, sequential)

the variable dependency graph G (defined by the vertex functions)

I Structure-to-function theory for BNs relates the properties of the above components to
properties of the associated phase spaces:

2

n[4]=(3,4,5,8)1 3

5
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8

4 f4(x3, x4, x5, x8)
−→

I Most of the theory and results shown in this presentation hold for generalizations of BNs
(referred to as for example graph dynamical systems/automata networks/polynomial dynamical
systems/finite dynamical systems/sequential dynamical systems).
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Terminology and Notation: Sequential Graph Dynamical Systems (I)

I Structure:

A (vertex) function sequence (fi )
n
i=1 with fi : Kn −→ K with K a finite set (for

example K = {0, 1}.)
A corresponding function sequence (Fi )

n
i=1 : Kn −→ Kn defined by

Fi

(
x = (x1, x2, . . . , xn)

)
= (x1, . . . , xi−1, fi (x), xi+1, . . . , xn) .

A permutation π =
(
π1, . . . , πn

)
∈ Sn.

Definition
The sequential graph dynamical system map Fπ : Kn −→ Kn given by f = (fi )i and π is

Fπ = Fπn ◦ Fπn−1 ◦ · · · ◦ Fπ2 ◦ Fπ1 .
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Terminology and Notation: Sequential Graph Dynamical Systems II

Definition
The variable dependency graph G of (fi )i is the simple graph with vertex
set V (G) = {1, 2, . . . , n} and edge set E(G) all undirected edges {i , j} for which fi depends
non-trivially on xj or fj depends non-trivially on xi . The symmetric group on V (G) is denoted
by SG (the set of all permutation update sequences).

Definition
The phase space of F : Kn −→ Kn is the directed graph Γ with vertex set Kn and edge
set {(x ,F (x)) | x ∈ Kn}.
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Example I: a Structure-to-Function Result for ABNs

I Boolean vertex functions f = (fi )
4
i=1 defined by (indices modulo 4):

fk (x1, x2, x3, x4) = nor3(xk−1, xk , xk+1) = (1 + xk−1)(1 + xk )(1 + xk+1) mod 2

I Dependency graph G is a square.

I Example phase spaces Γ(Fπ) with π ∈ SG :
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Theorem
For any π ∈ SG and ABN map Fπ where each vertex function is a nor-function, Per(Fπ) is in
a 1-1 correspondence with the set of independent sets of G.

(For I ∈ I define xI = (xv )v by xv = 1 if and only if v ∈ I .)
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Example II: a Structure-to-Function Result for BNs

Definition (Threshold vertex function)

Let K = {0, 1}, let A = (aij )
n
i,j=1 be a real symmetric matrix, let θ = (θ1, . . . , θn) ∈ Rn, and let

F = (f1, . . . , fn) : Kn −→ Kn be the function defined coordinate-wise by

fi (x1, . . . , xn) =

0, if
n∑

j=1
aijxj < θi

1, otherwise .

Theorem (Goles & Olivos [1])
If F is a BN map over a graph G where each vertex function is a generalized threshold function
as above, then all x ∈ {0, 1}n, are forward asymptotic to a fixed point or a 2-cycle.
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Main Presentation Outline

Setup: will consider a fixed list of vertex function (fv )v (and therefore a fixed graph G),
and will vary the update sequence π ∈ SG .

Goals:
Demonstrate how one may compare maps Fπ and Fπ′ using various types of comparisons using
properties of G
Give algorithms for deriving complete sets of update sequence representatives for exploring the
diversity of dynamics under the various comparisons (i.e., equivalence notions)

Comparisons:
Functional equivalence – identify of maps
Dynamical equivalence – topological conjugacy of maps
Cycle equivalence – topological conjugacy of maps restricted to their periodic points

Associated structures and combinatorics:

The set of acyclic orientations of G , denoted by Acyc(G)

Toric equivalence ∼κ on Acyc(G) and its set of equivalence classes Acyc(G)/∼κ

The automorphism group of G , denoted by Aut(G) (if time permits)
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Acyclic Orientations and Functional Equivalence I — Acyc(G )

I Question: for π, π′ ∈ SG , when is Fπ = Fπ′?

I Key insight: F4 ◦ F1 ◦ F3 ◦ F2 = F4 ◦ F3 ◦ F1 ◦ F2

G = Circle4

34

1 2

Definition (∼α on SG )

Two permutations π, π′ ∈ SG are α-related if they differ
by exactly one transposition of two consecutive
elements πi and πi+1 where {πi , πi+1} 6∈ E(G).
The equivalence relation ∼α on SG is the transitive and
reflexive closure of the α-relation.

U(Circle4)

(1234) (2341) (3412) (4123)

(4321) (3214) (2143) (1432)

(1243) (1423) (3241) (3421)

(2134) (2314) (4132) (4312)

(1324) (3124) (2413) (4213)

(1342) (3142) (2431) (4231)

I The map f ′G : SG −→ Acyc(G) is defined by mapping π ∈
SG to the acyclic orientation O(π) where each edge is ori-
ented according to π (as a linear order.) 34

1 2

34

1 2

¼ = (1,2,3,4) O(¼)
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Acyclic Orientations and Functional Equivalence II — Acyc(G )

I Let f = (fi )i . We set αf (G) = |{Fπ | π ∈ SG}|.

Proposition

Let f = (fi )i be a function sequence with dependency graph G.

(i) We have π ∼α π′ implies Fπ = Fπ′ .

(ii) The map f ′G extends to a well-defined bijection fG : SG/∼α−→ Acyc(X ) by [π]
fG7→O(π).

(iii) We have αnor(G) = α(G).

I Implications and results:

Norπ = Norπ′ if and only if π ∼α π′.
Have a computationally efficient, graph-based, sufficient condition to guarantee equality of
maps Fπ and Fπ′ : if O(π) = O(π′) then Fπ = Fπ′

Can enumerate α(G) through the deletion/contraction recursion relation:

α(X ) = α(X/e) + α(X \ e)

Note that α(G) = TG (2, 0). Here TG is the Tutte polynomial of G . (Remark: the point
(2, 0) is in the computationaly intractable domain (D. Welsh).)
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Acyclic Orientations and Functional Equivalence III — Acyc(G )

I Summary:

Have linked Acyc(G) to functional equivalence of ABN maps Fπ

Have an efficient, sufficent condition to determine if Fπ = Fπ′ using O(π) and O(π′)

The condition is valid for any fixed list of vertex funtions (fv )v for any state set K (even
infinite)

Have an upper bound for the number of distinct maps Fπ that can be constructed by
varying π: α(G) = |Acyc(G)|
These results are also valid for directed graphs G
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Cycle Equivalence I

Cycle Equivalence

Definition (Cycle Equivalence)

Two maps φ and ψ over finite state spaces are cycle equivalent if there is a bijection h such that

ψ ◦ h = h ◦ φ

holds when restricted to the periodic points of φ. (Or: multi-sets of cycle sizes are equal.)

I Example: Norπ for selected permutation update sequences over G = Circle4:
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I Note: there are 2 distinct cycle structures in the phase spaces above: {7(1)} and {2(2), 3(1)}
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Cycle Equivalence I

Theorem (Macauley & Mortveit, Nonlinearity 2009)

Let f = (fi )i be a sequence of vertex functions and assume that the state space
satisfies |K | <∞. For any permutation π ∈ SG , the maps Fπ and Fshift(π) are cycle equivalent.

Proof idea: F1 ◦ (Fn ◦ · · · ◦ F2 ◦ F1) = (F1 ◦ Fn ◦ · · · ◦ F2) ◦ F1.

Set Pk = Per(Fshiftk (π)). The diagram

Pk−1

Fshiftk−1(π)
//

Fπ(k)

��

Pk−1

Fπ(k)

��

Pk
Fshiftk (π)

// Pk

commutes for all 1 ≤ k ≤ n, and Fπ(k)(Pk−1) ⊂ Pk .
The restriction map Fπ(k) : Pk−1 −→ Fπ(k)(Pk−1) is an injection, so |Pk−1| ≤ |Pk | and

|Per(Fπ)| ≤ |Per(Fshift1(π))| ≤ · · · ≤ |Per(Fshiftn−1(π))| ≤ |Per(Fπ)| .

All inequalities are equalities, and since the graph and state space are finite, all the restriction
maps Fπ(k) are bijections.
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Cycle Equivalence I

Theorem (Macauley & Mortveit, Nonlinearity 2009)

Let f = (fi )i be a sequence of vertex functions and assume that the state space
satisfies |K | <∞. For any permutation π ∈ SG , the maps Fπ and Fshift(π) are cycle equivalent.

Proof idea: F1 ◦ (Fn ◦ · · · ◦ F2 ◦ F1) = (F1 ◦ Fn ◦ · · · ◦ F2) ◦ F1.

Set Pk = Per(Fshiftk (π)). The diagram

Pk−1

Fshiftk−1(π)
//

Fπ(k)

��

Pk−1

Fπ(k)

��

Pk
Fshiftk (π)

// Pk

commutes for all 1 ≤ k ≤ n, and Fπ(k)(Pk−1) ⊂ Pk .
The restriction map Fπ(k) : Pk−1 −→ Fπ(k)(Pk−1) is an injection, so |Pk−1| ≤ |Pk | and

|Per(Fπ)| ≤ |Per(Fshift1(π))| ≤ · · · ≤ |Per(Fshiftn−1(π))| ≤ |Per(Fπ)| .

All inequalities are equalities, and since the graph and state space are finite, all the restriction
maps Fπ(k) are bijections.
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Cycle Equivalence I

Cycle Equivalence - III

I Observation 1: if two permutations π, π′ ∈ SG differ by (i) a sequence of consecutive,
non-adjacent transpositions and (ii) cyclic shifts, then Fπ and Fπ′ are cycle equivalent. If π, π′

are related in this manner, then we say they are torically equivalent.

I Observation 2: toric equivalence of permutations is succinctly captured through sequences of
source-to-sink conversions of acyclic orientations.

I Example:

O(π = (1, 3, 2, 4)) =

1 2

4 3

1
2 3

3
4



= O(π′ = (3, 2, 4, 1))

Definition (Toric equivalence ∼κ on Acyc(G ))

For acyclic orientations O,O′ ∈ Acyc(G) we say that O is κ-related to O′ if O can be
converted to O′ by converting exactly one source vertex v ∈ G of O to a sink.
The toric equivalence relation ∼κ on Acyc(G) is the transitive- and reflexive closure of
the κ-relation.
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Cycle Equivalence I

Cycle Equivalence - III

I Observation 1: if two permutations π, π′ ∈ SG differ by (i) a sequence of consecutive,
non-adjacent transpositions and (ii) cyclic shifts, then Fπ and Fπ′ are cycle equivalent. If π, π′

are related in this manner, then we say they are torically equivalent.

I Observation 2: toric equivalence of permutations is succinctly captured through sequences of
source-to-sink conversions of acyclic orientations.

I Example:

O(π = (1, 3, 2, 4)) =

1 2

4 3

1
2

3
4

= O(π′ = (3, 2, 4, 1))

Definition (Toric equivalence ∼κ on Acyc(G ))

For acyclic orientations O,O′ ∈ Acyc(G) we say that O is κ-related to O′ if O can be
converted to O′ by converting exactly one source vertex v ∈ G of O to a sink.
The toric equivalence relation ∼κ on Acyc(G) is the transitive- and reflexive closure of
the κ-relation.
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Outline of proof - Case 2
References

Combinatorics and Dynamics Related to Toric Equivalence

I We set κ(G) = |Acyc(G)/∼κ |, the number of toric equivalence classes.

I By the previous theorem, κ(G) is an upper bound for the number of distinct cycle structure
that one can generate by maps of the form Fπ for a fixed sequence (fv )v .

Theorem (Macauley & Mortveit, Proc. AMS.)

κ(G) =

{
κ(G1)κ(G2), e is a bridge linking G1 and G2 ,

κ(G/e) + κ(G \ e), e is a cycle-edge .

Corollary (Macauley & Mortveit)

Let f = (fi )i be a sequence of vertex functions whose dependency graph G is a tree. Then all
maps Fπ have the same periodic orbit structure.

I Because: for a tree G we have κ(G) = 1.
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Outline of proof - Case 2
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Example (Enumerations)

Let G = Q3
2 , the binary 3-cube for which |SG | = 8! = 40320.

000

100

110

010

111

101

001

011

κ( ) = κ( ) + κ( ) = κ( ) + 2κ( ) + κ( )

= κ( ) + 2κ( ) + 2κ( ) + κ( ) + κ( )

= κ( ) + 4κ( ) + 2κ( ) + κ( ) + κ( )

= 27 + 64 + 16 + 12 + 14 = 133

I Can show in a similar way that α(Q3
2 ) = |Acyc(Q3

2 )| = 1862.
I Moreover, we have δ(G) = 67 and ᾱ(G) = 54 and κ̄(Q3

2 ) = 8, but that is for another talk.
I All bounds, as they pertain to dynamics, are attained for using vertex functions (nori )i .



Background
Equivalence of Sequential Graph Dynamical Systems

Enumeration for κ-equivalence

Outline of proof - Case 2
References

Determining if π ∼κ π′ — Coleman’s ν-function

I Let P = (v1, v2, . . . , vk ) be a (possibly closed) simple path in G . The map

νP : Acyc(G) −→ Z

is defined by νP(O) = n+
P (O)− n−P (O) where n+

P (resp. n−P ) is the number of edges of the

form {vi , vi+1} in G oriented as (vi , vi+1)
(
resp. (vi+1, vi )

)
in O.

+

+

+

-

-

--
º(P) = -2

Lemma
Let C be a simple, closed path in the simple graph G. The map νC induces a
map ν∗C : Acyc(G)/∼κ−→ Z.
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Determining if π ∼κ π′, thus implying that Fπ and Fπ′ are cycle equivalent.

Proposition (Macauley & Mortveit, EJC.)

Let C = (C1, . . . ,Cm) be a cycle basis of G. Extended to C, the function ν∗C is complete
invariant for κ-equivalence

1 2

4 3

C
1

C
2

C   = (C
1
,C

2
)

1 2

4 3

C
1

C
2

¼
a
=(1,2,3,4)

ºC(¼a
)=(-1,-1)

1 2

4 3

C
1

C
2

¼
b
=(3,4,1,2)

ºC(¼b
)=(-1,-1)

1 2

4 3

C
1

C
2

¼
c
=(4,3,2,1)

ºC(¼c
)=(1,1)

I Implications:

The map ν∗C provides a computationally efficient method to assess if π ∼κ π′, and in turn:

We have a computationally efficient, graph/sequence-based, sufficient condition to test if
Fπ and Fπ′ are cycle equivalent.



Background
Equivalence of Sequential Graph Dynamical Systems

Enumeration for κ-equivalence

Outline of proof - Case 2
References

Constructing a complete phase space atlas for cycle structures

Proposition (Macauley & Mortveit, Proc. AMS)

Let Acycv (G) be the subset of Acyc(G) consisting of all elements where the vertex v is the
unique source. For any fixed vertex v of a connected graph G, there is a bijection

φv : Acycv (G) −→ Acyc(G)/∼κ .

I Cycle Structure Atlas Recipe. [Mortveit and Pederson, Math. Bull. 2019 [2]] Constructing
all possible cycle structures for maps Fπ under fixed vertex functions (fv )v .

Pick a vertex v of maximal degree, and construct Acycv (G).

For each O ∈ Acycv (G) pick a permutation representative π (using for example

f −1
G (Acycv (G)) ).

Determine the cycle structure of Fπ .

I Have Python code for the above computations (see [2]):

git@github.com:HenningMortveit/gds-framework-python.git,

git@github.com:HenningMortveit/gds-framework-python.git
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Example: gene-regulatory network for Arabidopsis thaliana

I Computational scaling of previous algorithm: how large networks can be handled?

I In practice, many application networks (e.g., biological) contain “parameter vertices” or are
asymoptotically fixed.

I Illustration: Model from Demongeot et al. [3]; considers 12 genes and their associated
regulatory network for the plant Arabidopsis thaliana

I Model class: generalized, binary, threshold GDS (same as earlier, but using their notation
here)

I W = [Wij ] ∈ Rn×n matrix of weights

I θ = [θi ] ∈ Rn vector of thresholds

I GDS F : Kn −→ Kn defined by (H the Heaviside step function):(
F (x)

)
i

= H
(
(
∑
j

wijxj )− θi
)

(1)

I Goal: investigate the dynamical diversity of attractors for the asynchronous update scheme
using permuations.
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Example: gene-regulatory network for Arabidopsis thaliana

I Translation table from gene name (abbrvs.) to integers:
Abbrv. ID Abbrv. ID Abbrv. ID Abbrv. ID
EMF1 1 TFL1 2 LFY 3 AP1 4
CAL 5 LUG 6 UFO 7 BFU 8
AG 9 AP3 10 PI 11 SUP 12

1
2

3

4

9

6

5 7

11

12

8
10
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Example: gene-regulatory network for Arabidopsis thaliana

I Associated combinatorial graph (theory is identical):

1
2

3

4

9

6

5 7

11

12

8
10

I κ(G) = κ(G1)(G2) = (24 − 2)× (24 − 1) = 210

I Thus: at most 210 distinct attractor structures (compare to 12! = 479, 001, 600

I This holds for any choice of vertex functions.

I However, for the specific choice here we can do more.



Background
Equivalence of Sequential Graph Dynamical Systems

Enumeration for κ-equivalence

Outline of proof - Case 2
References

Example: gene-regulatory network for Arabidopsis thaliana

I By the particular form of the GDS map H (i.e. the matrix W ) many states will be fixed on
attractors. For each choice of initial value for x1 = x1(0) we obtain the following simplified
graph (induced by colored vertices):

1
2

3

4

9

6

5 7

11

12

8
10

G
1

G
2

I The highlighted subgraph is a tree, so its κ-value is 1. Taking into account the two possible
initial values for x1 we therefore conclude that there are at most 2 attractor structures for this
network under sequential update schemes.

I Quiz: What do the cycle structures look like?
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Beyond Cycle Structure: Toric Equivalence and Transient Structure I

I The map Fπ1 : ΓFπ −→ ΓFσ1(π)
is a graph morphism mapping each edge (x ,Fπ(x)) ∈ ΓFπ to

the edge (Fπ1 (x),Fπ1 (Fπ(x))) ∈ ΓFσ1(π1)
.

I Example: the graph is Circle4 with vertex set {1, 2, 3, 4} plus the additional diagonal
edge {1, 3}; Each vertex function is a bi-threshold functions with k↑ = 1 and k↓ = 3.

(1,1,0,0)

(1,0,0,0)

(0,0,0,0)

(0,1,1,0) (1,0,0,1)

(0,0,1,1)

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)

(0,1,0,1)

(0,1,1,1)

(1,0,1,0)

(1,1,0,1)

(1,0,1,1)

(1,1,1,0)

(1,1,1,1)

π  = (2,1,3,4)
*

(0,1,0,0)

(0,1,0,1)

(1,0,1,0)

(1,0,1,1)

(1,1,0,0)

(1,0,0,0)(0,0,0,0)

(0,1,1,0) (1,0,0,1)

(0,0,1,1)

(0,0,0,1)

(0,0,1,0)

(0,1,1,1)

(1,1,0,1)

(1,1,1,0)

(1,1,1,1)

π  = (1,3,4,2)

*

(1,1,0,0)(1,0,0,0)

(0,0,0,0)

(0,1,1,0)

(1,0,0,1)

(0,0,1,1)

(0,0,0,1)

(0,0,1,0)

(0,1,0,0) (0,1,0,1)

(0,1,1,1)

(1,0,1,0)

(1,1,0,1)

(1,0,1,1)

(1,1,1,0)(1,1,1,1)

π  = (4,2,1,3)

*

(1,1,0,0) (1,0,0,0)

(0,0,0,0)

(0,1,1,0)

(1,0,0,1)

(0,0,1,1)

(0,0,0,1)

(0,0,1,0)

(0,1,0,0)

(0,1,0,1)

(0,1,1,1)

(1,0,1,0) (1,1,0,1)

(1,0,1,1)

(1,1,1,0)(1,1,1,1)

π  = (3,4,2,1)

*
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Beyond Cycle Structure: Toric Equivalence and Transient Structure II

Theorem (Under review.)

Assume that x = x(0) ∈ GoE(Fπ) with maximal transient path P0 = PFπ (x(0))

satisfies (i) Fπ(x) 6∈ Per(Fπ) and (ii) F−1
π

(
Fπ(x)

)
⊂ GoE(Fπ). Then (a) the states x(k) ∈ Kn

defined by
x(k) = Fπk ◦ · · · ◦ Fπ1 (x) in Γ(Fσk (π)), with 0 ≤ k ≤ n − 1 ,

are all transient states of their respective phase spaces. Moreover, (b) any sequence of maximal
transient paths (Pk )k with Pk containing x(k) satisfies the inequality

|`(Pk )− `(P0)| ≤ 1 ,

and (c) ∣∣{k | `(Pk ) 6= `(Pk+1)}
∣∣ ≤ 2 .

Corollary

For each toric equivalence class [O(π)]κ there exists k such that the maximal transient length
`max(Fπ) satisfies k − 1 ≤ `max(Fπ) ≤ k.
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Summary: Equivalences of Maps Fπ and Overview of Structures

SG

��

Acycv(G) Zdim(C)

U(G)/∼c SG/∼αoo
ψG //

Aut(G)-

action
γ·[π]=[γπ]

��

Acyc(G) //

Aut(G)-

action
γ·O=γ◦O◦γ−1

��

Acyc(G)/∼κ //

Aut(G)-

action
γ·[O]=[γ·O]

��

φv

OO

ν∗C

99

Acyc(G)/∼δ

Aut(G)-

action

��

SG/∼ᾱ
ψ∗G // Acyc(G)/Aut(G) Acyc(G)/∼κ̄ // Acyc(G)/∼δ̄
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