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Algebraic and Combinatorial Computational Biology
1. Multiscale graph-theoretic modeling of biomolecular structures.

(Jungck, D. Knisley, Pangborn, Riehl, Wiesner)

2. Tile-based DNA nanostructures: mathematical design and problem
encoding. (Ellis-Monaghan, Jonoska, Pangborn)

3. Graphis associated with DNA rearrangements and their polynomials.
(Brijder, Hoogeboom, Jonoska, Saito)

4. The regulation of gene expression by operons and the local modeling
framework. (Macauley, Jenkins, Davies)

5. Modeling the stochastic nature of gene regulation with Boolean
networks. (Murrugarra, Aguilar)

6. Inferring interactions in molecular networks via primary
decompositions of monomial ideals. (Macauley, Stigler)

7. Analysis of combinatorial neural codes: an algebraic approach.
(Youngs, Curto, Veliz-Cuba)

8. Predicting neural network dynamics: insights from graph theory. (Morrison, Curto)

9. Multistationarity in biochemical networks: Results, analysis, & examples. (Conradi, Pantea)

10. Optimization problems in phylogenetics: Polytopes, programming and interpretation. (Hamerlinck,
Forcey, Sands)

11. Clustering via self-organizing maps on biology and medicine. (Akman, Comar, Hrozencik, Gonzalez)

12. Toward revealing protein function: Identifying biologically relevant clusters with graph spectral
methods. (Davies, Ghosh-Dastidar, J. Knisley and Samyono)
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Alebrauc?
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Local models

Let F be a field of order q = pk , R = F[x1, . . . , xn], and I = 〈xq
1 − x1, . . . , x

q
n − x〉.

Definition

A local model over F is an n-tuple of functions f = (f1, . . . , fn), where each fi : Fn → F.

Remarks

Every local model f = (f1, . . . , fn) over F. . .

1. can be associated with a unique element in (R/I )× · · · × (R/I ).

2. defines a finite dynamical system (FDS), by iterating the map

f : Fn −→ Fn, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

3. has a unique asynchronous automata: the digraph with vertex set Fn and edges

E =
{

(x ,Fi (x)) | i = 1, . . . , n; x ∈ Fn
}
.

4. defines a wiring diagram.

If |F| = q, then the number of items in (1), (2), (3) are all counted by q(nqn).
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Examples: synchronous vs. asynchronous
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Asynchronous

automata

00

01

10

11

FDS map

f1(x1, x2) = x2

f2(x1, x2) = x1
1 2

Functions Wiring diagram

010

000

111

101

110 011 100 001

FDS map

111

110 101 011

100 010 001

000

Asynchronous automata
(self-loops omitted)

f1 = x2

f2 = x1 ∧ x3

f3 = x2
1

2

3

Functions Wiring diagram

Remarks

The 2-cycle in the 1st FDS map is an “artifact of synchrony.”

In the 2nd asynchronous automata, there is a directed path between any two nodes.
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Local models over general finite fields: synchronous vs. asynchronous
Recall: F is a finite field of order q = pk , and

R/I = F[x1, . . . , xn]/〈xq
1 − x1, . . . , x

q
n − xn〉.

Summary

There are bijections between the following sets of cardinality q(nqn):

local models (f1, . . . , fn) over F, i.e., elements of (R/I )n

FDS maps, Fn → Fn;

asynchronous automata: a digraph G = (Fn,E) with the “local property”.

Open-ended question

Better understand the following:
local model
(f1, . . . , fn)

FDS map

Fn → Fn

asynch. automata
(Fn, E)
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Forward engineering: tryptophan synthesis and metabolism

Tryptophan (W) is one of the 21 amino acids that make up building blocks for proteins.

Humans are unable to synthesize it, so it must be obtained from their diets.

E. coli can synthesize it, via a repressible trp operon.

It is then metabolized by the tryptophanase (tna) operon.
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The tna network

The tna operon codes for the proteins needed to metabolize tryptophan and use it as a
carbon source in the absense of glucose.
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An ODE model of tryptophan metabolism (Orozco-Gómez, 2019)

A′ = kAPG (Ge )PW (W )− (γA + µ)A

B′ = kB PG (Ge )PW (W )− (γB + µ)B

W ′ = (α+ βB)We − (δ + εAPA(Ge ,We ) + µ)W

Variables:

A(t): concentration of TnaA protein

B(t): concentration of TnaB protein

W (t): concentration of intracellular tryptophan

Parameters:

We : concentration of extracellular tryptophan

Ge : concentration of extracellular glucose

Rate constants:

kA, kB : from mass-action kinetics

γA, γB : protein degradation

µ cellular growth (causes dilution)

Functions:

PG (Ge ) =
K

nG
G

K
nG
G

+G
nG
E

, PW (W ) = W nW

K
nW
W

+W nW
: sigmoidal Hill functions.
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An ODE model of tryptophan metabolism (Orozco-Gómez, 2019)

The authors developed this model using known regulatory mechanisms and experimental
data.

A′ = kAPG (Ge )PW (W )− (γA + µ)A

B′ = kB PG (Ge )PW (W )− (γB + µ)B

W ′ = (α+ βB)We − (δ + εAPA(Ge ,We ) + µ)W

They showed both mathematically and experimentally that the operon is bistable for a
specifc range of parameter values.

We showed that Boolean model can predict the same qualitative behavior.
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A Boolean model of the tna operon

Variables:

TnaA protein: fA = M

TnaB protein: fB = M

cAMP–CAP protein complex: fC = Ge .

Tna mRNA: fM = C ∧ R.

Rho protein (repressor): fR = W ∧Wm

Intracellular tryptophan (high levels): fW = We ∧ B

Intracellular tryptophan: fWm = (Wem ∧ B) ∨We ∨W

Parameters:

Ge : extracellular glucose

We : extracellular tryptophan (high levels)

Wem: extracellular tryptophan
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Fixed point analysis

Rename our variables:

(A,B,C ,M,R,W ,Wm) = (x1, x2, x3, x4, x5, x6, x7).

To find the fixed points we must solve the system {fxi = xi | i = 1, . . . , 7} of equations.

This is easiest by first writing functions as polynomials in F2[x1, . . . , x7]:

x1 + x4 = 0

x2 + x4 = 0

x3 + Ge + 1 = 0

x4 + x3(1 + x5) = 0

x5 + (1 + x6)(1 + x7) = 0

x6 + x2 ·W3 = 0

x7 + x2(x6 ·We ·Wem + x6Wem + We ·Wem + Wem) + x6(1 + ·We ) + We + x6.

We must solve this system for 6 parameter combinations of (Ge ,We ,Wem) ∈ F3
2.
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Fixed point analysis using Macaulay2

-- Define a polynomial ring over F2:

R = ZZ/2[A,B,C,M,R,W,Wm,We,Wem]

J = ideal(A^2-A,B^2-B,C^2-C,M^2-M,R^2-R,W^2-W,Wm^2-Wm,We^2-We,Wem^2-Wem)

Q = R/J

-- Set shortcuts for AND and OR operations:

RingElement | RingElement :=(x,y)->x+y+x*y;

RingElement & RingElement :=(x,y)->x*y;

-- Define the Boolean functions

f1 = M; f2 = M; f3 = 1+G; f4 = C & (1+R); f5 = (1+W) & (1+Wm); f6 = We & B; f7

= (Wem & B) | We | W;

-- Set the parameters (in this case, no glucose, medium levels of tryptophan)

G = 0 Q; We = 0 Q; Wem = 1 Q;

-- Define the ideal generated by {fxi + xi | i = 1, . . . , 7} in the quotient ring:

I = ideal(f1+A, f2+B, f3+C, f4+M, f5+R, f6+W, f7+Wm)
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Fixed point analysis

-- Compute a Gröbner basis of I :

G = gens gb I;

-- This gives the output

| W R+Wm+1 M+Wm C+1 B+Wm A+Wm |

Which means: W = 0, C = 1, Wm = A = B = M = R + 1.

Parameters Fixed point(s) Operon
x = (Ge ,We ,Wem) (A,B,C ,M,R,W ,Wm) ON or OFF ?

(0,0,0) (0, 0, 1, 0, 1, 0, 0) OFF
(0,1,1) (0, 0, 1, 0, 1, 0, 1) OFF
(0,0,1) (0, 0, 1, 0, 0, 0, 0) OFF

(1, 1, 1, 1, 0, 0, 1) ON
(1,0,0) (0, 0, 0, 0, 1, 0, 0) OFF
(1,1,1) (0, 0, 0, 0, 0, 0, 1) OFF
(1,0,1) (0, 0, 0, 0, 0, 0, 0) OFF

Table : Fixed points of our tna operon Boolean network model for each choice of parameters.

Summary

All of the fixed points make sense biologically and predict bistability.
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Forward vs. reverse engineering

The previous model is an example of forward engineering: Given biological knowledge,
proposal a model, generate data, and analyze it.

The reverse engineering problem does the opposite: given data, use it to generate a model.

There are many modeling frameworks:

Differential equations

Difference equations

Statistical models

Boolean or logical networks

All of these utilize different techniques.

We’ll look at this last framework. Computational algebraic techniques tend to arise in their
analysis.
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Mammalian signaling pathways
From “Network Reconstruction from Perturbation Time Course Data” (Smith et al., 2019).

They propose an ODE-based algorithm that analyzes data from gene knockouts. They train
it on synthetic 2-node and 3-node networks constructed in Matlab.

Then, they apply their methods to the ERK and AKT pathways, widely important in
mammalian signaling.

Goal

Can algebraic methods do better?

Figure : Machine in a Clemson bioengineering lab that performs gene knockouts and collects time-series
data.
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Broad goal

Suppose we have an unknown Boolean function fi : F3
2 → F2:

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 0 ? ? ? ? ? 1

Goal

Find all “minimal wiring diagrams”.

Different types of interactions are indicated in the wiring diagram:

fj = xi ∧ xk

xi xj

“xi activates xj ”

fj = xi ∧ xk

xi xj

“xi inhibits xj ”

fj = xi + xk

xi xj

“xi affects xj positively & negatively”

Algebraic methods have been proposed in the following papers:

1. Unsigned version, using monomial ideals: Reverse engineering of dynamics networks
(Stigler, Jarrah, Stillman, Laubenbacher, 2007)

2. Signed version, using pseudomonomial ideals: An algebraic approach to reverse
engineering finite dynamical systems arising from biology (Veliz-Cuba, 2012)
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The basic idea

Figure : Image courtesy of Alan Veliz-Cuba.
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Data and model spaces

Let f : Fn → F be a function, where F = Fp .

Definition

Consider a set of data

D =
{

(s1, t1), . . . , (sm, tm)
}
, si ∈ Fn, ti ∈ F

of input-output pairs, all si are distinct. We say that f fits the data D if

f (si ) = f (si1, . . . , sin) = ti , for all i = 1, . . . ,m.

The model space of D is the set Mod(D) of all functions that fit the data, i.e.,

Mod(D) =
{

f : Fn → F | f (si ) = ti for all i = 1, . . . ,m
}
.

For any f in Mod(D), the support of f is the set of variables on which f depends.

Under a slight abuse of notation, we can think of the support as a subset of {x1, . . . , xn} or
as a subset α ⊆ [n] = {1, . . . , n}.
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Feasible, disposable, and min-sets

Definition

With respect to a set D of data, a set α ⊆ [n] is:

feasible if there is there is some f ∈ Mod(D) for which supp(f ) ⊆ α.

disposable if there is some f ∈ Mod(D) for which supp(f ) ∩ α = ∅.
Note that a set α is feasible if and only if its complement α := [n]− α is disposable.

Remark

These are not opposite concepts; a set can be both feasible and disposable, or neither.

Key point

Let D be a set of data, and α, β ⊆ [n].

(i) If α and β are feasible with respect to D, then so is α ∪ β.

(ii) If α and β are disposable with respect to D, then so is α ∩ β.

In particular, the disposable sets of D form a simplicial complex ∆D.

Definition

A subset α ⊆ [n] is a min-set of D if its complement α := [n]− α is a maximal disposable
set of D.
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Alexander duality

Definition

Given an ideal I in F[x1, . . . , xn], define the simplicial complex

∆I c :=
{
α | xα 6∈ I

}
.

Given a simplicial complex ∆, define a square-free monomial ideal

I∆c :=
〈
xα | α 6∈ ∆

〉
.

This is called the Stanley-Reisner ideal of ∆.

Theorem

The correspondence I 7→ ∆I c and ∆ 7→ I∆c is a bijection between:

(i) simplicial complexes on [n] = {1, . . . , n},
(ii) square-free monomial ideals in F[x1, . . . , xn].

This correspondence is called Alexander duality.
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Min-sets and Stanley-Reisner theory applied to min-sets

Theorem

There is a bijective correspondence between:

the simplicial complex ∆D of disposable sets,

the square-free monomial ideal I∆c
D

in F[x1, . . . , xn] of non-disposable sets.

In other words, α is a min-set of D if and only if α is a maximal disposable set, and

xα ∈ I∆c
D

if and only if α is non-disposable.

For each pair (s, t), (s′, t′) ∈ D, define the monomial

m(s, s′) :=
∏

si 6=s′i

xi .

By construction, if t 6= t′, then supp(m(s, s′)) must be non-disposable.

Theorem

The ideal of non-disposable sets is the ideal in F2[x1, . . . , xn] defined by

I∆c
D

=
〈
m(s, s′) | t 6= t′

〉
.

The generators of the primary components of I∆c
D

are the min-sets of D.
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Example 2 (continued)

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 101 000 110
f (x , y , z) 0 0 1

Using our notation, the data D, grouped by output value, is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(101, 0), (000, 0), (110, 1)
}
.

Since t1 = t2 6= t3, we compute m(s1, s3) = yz and m(s2, s3) = xy .

xyz

xy xz yz

x y z

∅

Non-disposable sets ∆c
D ;

Monomials in I∆c
D

xyz

xy xz yz

x y z

∅

Disposable sets ∆D

∅

z y x

yz xz xy

xyz

Feasible sets of D
The min-sets are shaded
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Example 3

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 111 000 110
f (x , y , z) 0 0 1

Using our notation, the data D, grouped by output value, is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(111, 0), (000, 0), (110, 1)
}
.

Since t1 = t2 6= t3, we compute m(s1, s3) = z and m(s2, s3) = xy .

xyz

xy xz yz

x y z

∅

Non-disposable sets ∆c
D ;

Monomials in I∆c
D

xyz

xy xz yz

x y z

∅

Disposable sets ∆D

∅

z y x

yz xz xy

xyz

Feasible sets of D
The min-sets are shaded
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Summary so far

The following table summarizes the correspondence between the combinatorial structures in
the Boolean network problem to Stanley-Reisner theory and Alexander duality.

Reverse engineering of local models Stanley-Reisner theory

Disposable sets of D Faces of the simplicial complex ∆D

Non-disposable sets of D The non-faces, ∆c
D

The ideal 〈m(s, s′) | t 6= t′〉 of The Stanley-Reisner ideal I∆c
D

non-disposable sets

Feasible sets of D Complements of faces of ∆D

Min-sets of D Complements of max’l faces of ∆D
↔ primary components of I∆c

D
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Finding signed min-sets of local models

Consider a set of data (i.e., input-output pairs) with all si distinct:

D =
{

(s1, t1), . . . , (sm, tm)
}
, si ∈ Fn, ti ∈ F.

Order the data so the output values are non-decreasing, i.e., t1 ≤ · · · ≤ tm.

For each pair (s, t), (s′, t′) ∈ D with different outputs, i.e., t < t′, we encode each
coordinate xi where they differ with xi ± 1.

(xi − 1) if the interaction is positive (si < s′i ),

(xi + 1) if the interaction is negative (si > s′i ).

Then define the pseudomonomial

p(s, s′) :=
∏

si 6=s′i

(
xi − sign(s′i − si )

)
.

Theorem

The ideal of signed non-disposable sets is the ideal in F3[x1, . . . , xn] defined by

J∆c
D

=
〈
p(si , sj ) | i < j , ti 6= tj

〉
.

The primary components of J∆c
D

give the signed min-sets.
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Example (from “Broad goal” slide)

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 111 000 110
f (x , y , z) 0 0 1

The data D is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(111, 0), (000, 0), (110, 1)
}
.

Note that

p(s1, s3) = z − (sign(s33 − s13)) = z + 1, p(s2, s3) = (x − 1)(y − 1).

The ideal of signed non-disposable sets for D is thus

J∆c
D

=
〈
p(s1, s3), p(s2, s3)

〉
=
〈
z + 1, (x − 1)(y − 1)

〉
.

The following Macaulay2 commands compute the primary decomposition of J∆c
D

:

R = ZZ/3[x,y,z];

J_nonDisp = ideal(z+1, (x-1)*(y-1));

primaryDecomposition J_nonDisp

Output: {ideal (z + 1, y - 1), ideal (z + 1, x - 1)}

Primary decomposition: J∆c
D

=
〈
x − 1, z + 1

〉
∩ 〈y − 1, z + 1〉.

Signed min-sets: {x , z} and {y , z}.
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Summary

We call these pseudomonimal ideals because

J∆c
D

=
〈
z + 1, (x − 1)(y − 1)

〉
=
〈
x − 1, z + 1

〉
∩ 〈y − 1, z + 1〉 ⊆ F3[x , y , z]

can be thought of as

J∆c
D

=
〈
z, xy

〉
=
〈
x , z
〉
∩ 〈y , z〉 ⊆ F3[x , y , z, x , y , z],

which become monomial ideals under polarization.

In the “unsigned” case, Stanley-Reisner theory and Alexander duality provides a
correspondence between combinatorial structures in monomial ideals and Boolean networks.

Reverse engineering of local models Stanley-Reisner theory

Disposable sets of D Faces of the simplicial complex ∆D

Non-disposable sets of D The non-faces, ∆c
D

The ideal 〈m(s, s′) | t 6= t′〉 of The Stanley-Reisner ideal I∆c
D

non-disposable sets

Feasible sets of D Complements of faces of ∆D

Min-sets of D Complements of max’l faces of ∆D
↔ primary components of I∆c

D
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All genes
y

x

z

Knockout x
y

z

Knockout y

x

z

Knockout z
x

y

M. Macauley (Clemson) Algebraic Biology January 2020 31 / 35

mailto:macaule@clemson.edu


An alternative to discretization

All genes

y

x

z

Knockout x

y

z

Knockout y

x

z

Knockout z

x

y

t

0

1

2

x y z

1 2 0

1 1 1

1 0 2

~s

~t ~s′

~t′

t

0

1

2

y z

2 0

1 1

0 2

t

0

1

2

x z

1 0

1 1

1 2

t

0

1

2

x y

2 0

1 1

0 2

p(~s,~s′) = 0

p(~s,~s′) = (y + 1)(z − 1)

p(~s,~s′) = (y + 1)(z − 1)

p(~s,~s′) = (y + 1)(z − 1)

p(~s,~s′) = (y + 1)(z − 1)

p(~s,~s′) = 0

p(~s,~s′) = (z − 1)

p(~s,~s′) = (x + 1)(y − 1)

p(~s,~s′) = (x + 1)(y − 1)

We get the following ideals in F3[x , y , z]:

Jx =
〈
(x+1)(y−1)

〉
, Jy =

〈
(y+1)(z−1), (x+1)(y−1)

〉
, Jz =

〈
(y+1)(z−1), (z−1)

〉
.
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Min-sets from primary decompositions

The primary decompositions of these pseudomonimal ideals are:

Jx =
〈
(x + 1)(y − 1)

〉
= 〈x + 1〉 ∩ 〈y − 1〉

Jy =
〈
(y + 1)(z − 1), (x + 1)(y − 1)

〉
= 〈x + 1, z + 1〉 ∩ 〈y − 1〉

Jz =
〈
(y + 1)(z − 1), (z − 1)

〉
= 〈z − 1〉

This means that the signed min-sets are:

Gene x : {x}, {y}

Gene y : {x , z}, {y}

Gene z: {z}
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What to try next

In the same paper “Network Reconstruction from Perturbation Time Course Data” (Smith
et al., 2019), they try out their reverse engineering algorithm on synthetic data from an
AND/OR network:

We are optimistic that the algebraic methods will perform better, because AND/OR are
monotone functions.
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Current & future work

Biological

Apply these methods to experimental mammalian signaling data.

Mathematical

Develop a “signed Stanley-Reisner theory”.

Better understand what the primary decomposition means for pseudomonomial ideals.

Use gene knockouts to reverse-engineer canalizing functions.
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