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A Boolean network (BN) is a discrete dynamical system containing a
finite number of binary variables which evolve, in a discrete time and
through mutual interactions, according to a fixed law.
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A Boolean network (BN) is a discrete dynamical system containing a
finite number of binary variables which evolve, in a discrete time and
through mutual interactions, according to a fixed law.
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A Boolean network (BN) is a discrete dynamical system containing a
finite number of binary variables which evolve, in a discrete time and
through mutual interactions, according to a fixed law.

— The variables/components are indexed from 1 to n.
< The set of possible states/configurations is {0,1}",
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A Boolean network (BN) is a discrete dynamical system containing a
finite number of binary variables which evolve, in a discrete time and
through mutual interactions, according to a fixed law.

— The variables/components are indexed from 1 to n.
< The set of possible states/configurations is {0,1}",
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A Boolean network with n components is a function

f:{0,1}" = {0,1}"
z=(21,...,20) = f(z) = (fi(2),...,fu(2))
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A Boolean network with n components is a function

f:{0,1}" = {0,1}"
T = (371,...,:6") = f(.Z') = (fl(x)ﬂ7fn(x))
e i) 7

/

global transition function

(evolution law)

local transition functions
(from {0,1}" to {0,1})

Adrien Richard Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepcién, Chile 3/56



A Boolean network with n components is a function

f:{0,1}" = {0,1}"
T = (371,...,:6") = f(.Z') = (fl(x)ﬂ7fn(x))

The dynamic is given by the successive iterations of f :

5= 1) = 12(2) = ) >
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A Boolean network with n components is a function

f:{0,1}" = {0,1}"
T = (371,...,:6") = f(.Z') = (fl(x)ﬂ7fn(x))

The dynamic is given by the successive iterations of f :

5= 1) = 12(2) = ) >

A fixed point is a configuration z such that z = f(z).

fixed points = stable states
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Example 1 with n =3 ¢ | flo)
000 | 000

001 | 110

f(z) =22V 010 | 101

fo(z) =T ANT3 011 | 110

fa(z) =TA (11 V 22) 100 | 001

101 | 100

110 | 101

111 | 100
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Example 1 with n =3 ¢ | f(x)
000 | 000

001 | 110

f(z) =22V 010 | 101

fo(z) =T ANT3 011 | 110

f3(;1:) =T3 A (xl \ xQ) 100 | 001

101 | 100

110 | 101

111 | 100

010

|

011 101 111

L/ N

000 110 100

© \001/

Exercise : What is the nb of BNs with » components ?
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Example 1 with n =3

fl(l') =2 V 13
f(z) =T AT
fg(l’) =73 A ($1 V IQ)

010

|

011 101 111

L/ N

000 110 100

© \001/

Exercise : What is the nb of BNs with n components? — (27)(2") = 272"

z | f(@)
000 | 000
001 | 110
010 | 101
011 | 110
100 | 001
101 | 100
110 | 101
111 | 100
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The signed interaction graph of f is the signed digraph G defined by :
- the set of vertices is {1,...,n}
- there is a positive arc j — ¢ if there is € {0,1}" such that

fi(xlu .. '7xj—170axj+17 o ~7In)
ﬁ(a:l, 5o .,.’L’j_]_, 1a$j+17 o0 .,In)

0
1

- there is a negative arc j — 1 if there is z € {0,1}"™ such that

ﬁ'(l’l,...,xj_1,0,$j+1,...,In) 1
_ﬁ($1, oo .,Ji’j_l, 1, $j+1, oo .,In) =0
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Example 1

z_ | f(=z)

000 | 000

001 | 110

filz) =z Va 010 | 101

folz) =T N 011 | 110

jé( ) 3 ( ! 2) 101 | 100

110 | 101

) 111 | 100

Dynamic
Interaction graph
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Example 2

z | f(=z)
000 | 011
001 | 010
h(z) =z A 010 | 011
folz) =7V 011 | 110
r) =1mV(n Ao 100 | 001
jé( ) 3 ( ! 2) 101 | 010
110 | 001
) 111 | 111
Dynamic
Interaction graph
101
! O——®
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Example 3

z | f(z)
000 | 011
001 | 110
filz) =2 Va 010 | 111
f(z) =7V 011 | 110
z) =23V (1 \T 100 | 001
fi(z) =TV (nAw) 100 | 01
110 | 101
) 111 | 111
Dynamic
Interaction graph
111 100

L] D——0

010 011 001
AR \V4
111 110 - 101 @
§
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Example 4

_fi ( HI) =2y V 23

f(z) =2 Nas
fi(z) =a3 A\ (21 V 12)
Dynamic
001 010
1(150/ 011

N

000 110 101 111

o — O

W

z_| f(z)
000 | 000
001 | 100
010 | 100
011 | 101
100 | 000
101 | 110
110 | 101
111 | 111

Interaction graph
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Example 5

jﬁ(m) =Ty + I3
f2($) =1 A\ x3
fa(z) =a3 A (11 V22)
Dynamic
010
N
110 100
S

W

3N

z_| f(z)
000 | 000
001 | 100
010 | 100
011 | 001
100 | 000
101 | 110
110 | 101
111 | 011

Interaction graph
0
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Example 5

jﬁ(m) =Ty + I3
f2($) =1 A\ x3
fa(z) =a3 A (11 V22)
Dynamic
010
N
110 100
S

W

3N

z_| f(z)
000 | 000
001 | 100
010 | 100
011 | 001
100 | 000
101 | 110
110 | 101
111 | 011

Interaction graph
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Example 6

v | (@)
000 | 000

001 | 110

filz) =+ a3 010 | 101
f2($) =x3+ 1 011 | 011
2) —a 4+ 100 | o11
f(x) 1 101 | 101
110 | 110

111 | 000

Dynamic
Interaction graph
111 100 010 001

N\

000 011 101 110

0000 ©
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Exercise : What is the nb of signed digraphs with n vertices?
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Exercise : What is the nb of signed digraphs with n vertices? — qn*,
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]
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In the context of gene networks, the first reliable informations
often concern the interaction graph
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only ?
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only ?

Difficult question
< the nb of BNs on a given interaction graph G is (generally) HUGE.
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only 7

Difficult question

< the nb of BNs on a given interaction graph G is (generally) HUGE.

< 272" Boolean networks with n components

\arc Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepcién, Chile

13/56



Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only 7

Difficult question

< the nb of BNs on a given interaction graph G is (generally) HUGE.

< 272" Boolean networks with n components

<+ 4" interaction graphs with n vertices

Fixe
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only 7

Difficult question
< the nb of BNs on a given interaction graph G is (generally) HUGE.
< 272" Boolean networks with n components
<+ 4" interaction graphs with n vertices
— the nb of BNs on a random interaction graph G is doubly exponential.
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Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only 7

2. What can be said on the nb of fixed points of a Boolean network
according to its interaction graph only 7

13/56



Many applications, in particular :

- Neural networks [McCulloch & Pitts 1943]
- Gene networks [Kauffman 1969, Thomas 1973]

Question

1. What can be said on the dynamic of a Boolean network
according to its interaction graph only ?

2. What can be said on the nb of fixed points of a Boolean network
according to its interaction graph only 7

Number of fixed points in the gene Number of cellular types
network of a multicellular organism ™ in the organism
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Definitions

maximum number of fixed points in a BN on G

max(G) :
min(G) := minimum number of fixed points in a BN on G
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Definitions

max(G) := maximum number of fixed points in a BN on G
min(G) := minimum number of fixed points in a BN on G

Q—Q®
AV

There are 8 possibles BNs on K; since

flz) =z Azz or fi(z)=a3V a3
hlz)=z ANzz or fo(z) =11V a3

fa(z)=m Aaa or fy(z)=21 V1o
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Definitions

max(G) := maximum number of fixed points in a BN on G
min(G) := minimum number of fixed points in a BN on G
Q—0O
+
K; \ /
e | f(z) | [(z) | [(2) | f(z) | [(z) | f(2) | [(2) | f(=z)
000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000
001 | 000 | 100 | 010 | 110 | 00O | 100 | 010 | 110
010 | 000 | 100 | 000 | 100 | 001 | 101 | OO1 | 101
011 | 100 | 100 | 110 | 110 | 101 | 101 | 111 | 111
100 | 000 | 00O | 010 | 010 | OO1 | 0O1 | O11 | O11
101 | 010 | 110 | 010 | 110 | 011 | 111 | 011 | 111
110 | 001 | 101 | 011 | 111 | 001 | 101 | 011 | 111
111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111
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Definitions

max(G) := maximum number of fixed points in a BN on G
min(G) := minimum number of fixed points in a BN on G
@‘ ’@ 8 possible BNs
+
K \ / max(K;) = 2
mln(K+) =2
e | f(z) | [(z) | [(2) | f(=) | [(z) | f(2) | [(2) | f(=z)
000 | 000 | 000 | 000 | 000 | OO0 | 000 | 000 | 000
001 | 000 | 100 | 010 | 110 | 00O | 100 | 010 | 110
010 | 000 | 100 | 000 | 100 | 001 101 | 001 101
011 | 100 | 100 | 110 | 110 | 101 | 101 | 111 | 111
100 | 000 | 00O | 010 | 010 | OO1 | 0O1 | O11 | O11
101 | 010 | 110 | 010 | 110 | 011 | 111 | 011 | 111
110 | 001 | 101 | 011 | 111 | 001 | 101 | 011 | 111
111 | 111 | 111 | 111 | 111 | 111 | 111 | 111 | 111
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Definitions

maximum number of fixed points in a BN on G

max(G) :
min(G) := minimum number of fixed points in a BN on G
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Definitions

max(G) :

min(G) := minimum number of fixed points in a BN on G

maximum number of fixed points in a BN on G

Q—Q®
AV

There are 8 possible BNs on K, since

filz) =m A73

or

or

or
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Definitions

max(G) := maximum number of fixed points in a BN on G
min(G) := minimum number of fixed points in a BN on G
Q—0O
N/
e | f(z) | [(z) | f(2) | f(z) | f(z) | f(2) | f(z) | f(2)
000 | 111 | 111 | 1I1 | 111 | 111 | 111 | 111 | 111
001 | 001 | 101 | 011 | 111 | 001 | 101 | 011 | 111
010 | 010 | 110 | 010 | 110 | O11 | 111 | O11 | 111
011 | 000 | 000 | 010 | 010 | 0OO1 | OO1 | O11 | O11
100 | 100 | 100 | 110 | 110 | 101 | 101 | 111 | 111
101 | 000 | 100 | 000 | 100 | 001 | 101 | 001 | 101
110 | 000 | 100 | 010 | 110 | 000 | 100 | 010 | 110
111 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000
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Definitions

max(G) := maximum number of fixed points in a BN on G
min(G) := minimum number of fixed points in a BN on G
@‘ ’@ 8 possible BNs
Ky \ / max(K; ) =3
min(K; ) =1
e | f(z) | [(z) | f(2) | f(z) | f(z) | f(2) | f(z) | f(2)
000 | 111 [ 111 | 111 | 111 | 111 | 111 | 111 | 111
001 | 001 | 101 | 011 | 111 | 001 | 101 | 011 | 111
010 | 010 | 110 | 010 | 110 | O11 111 | 011 111
011 | 000 | 000 | 010 | 010 | 001 | OO1 | O11 | 011
100 | 100 | 100 | 110 | 110 | 101 | 101 | 111 | 111
101 | 000 | 100 | 000 | 100 | 001 | 101 | 001 | 101
110 | 000 | 100 | 010 | 110 | 000 | 100 | 010 | 110
111 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000
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Q—Q® Q—Q®
VARV,
8 BNs 8 BNs

maX(K;) =2 max(K; ) =3
min(K3+) =2 min(K; ) =1

Adrien Richard Fixed points and feedback cycles in Boolean netwoil
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Q—Q® Q—Q®
VARV,

8 BNs 8 BNs
maX(K;) =2 max(K; ) =3
min(K3+) =2 min(K; ) =1

OO,
© ®
O=®

~ 10** BNs
4 < max(Kg) < 16
min(Kg) = 2
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Q—Q®
Y/

8 BNs
max(K; ) =2
min(K3+) =2

OO,
© ®
O=®

~ 10*! BNs
4 < max(Kg) < 16
min(Kg) = 2

Q—Q®
Y/

8 BNs
max(K; ) =3
min(K; ) =1

OO,
O) ®
O=®

~ 10** BNs
max(Kg ) =20
min(Kg) =0

IWBN 2020 Satellite School - Concepcién
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Outline

No o e

Absence of cycle

Positive and negative cycles
Absence of positive/negative cycle
Positive feedback bound

Positive and negative cliques

The monotone case

Conclusion
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Positive feedback bound
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The monotone case

Conclusion
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constant local functions

iteration 1 ((DL @ J(D

iteration 3 @ @ @
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constant local functions

iteration 1 ((DL @ J(D

iteration 3 @ @ @
iteration 4 \®/ \®/



iteration 1

iteration 2

iteration 3

iteration 4

constant local functions

\®/ \@/

Q @ TR
N\l

A Y

stabilization
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iteration 1 @ @ @
iteration 2 @ @

iteration 3 @ @ @
\®/ \®/

stabilization

iteration 4

Theorem [Robert, 1980]

If G is acyclic then f™ is a constant function, thus

min(G) = max(G) = 1.
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Example 1

Dynamic

100 101 110 111

NN/

z | f(=z)
000 | 010
001 | 010
010 | 010
011 | 010
100 | 000
101 | 000
110 | 001
111 | 001

Interaction graph

@

|
|
®
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Example 2

Dynamic

001 001 001 o001

z | f(=z)
000 | 010
001 | 010
010 | 011
011 | 011
100 | 001
101 | 001
110 | 001
111 | 001

Interaction graph

@

|
|
®

19/56



Francois Robert [1980]

no cycle = “simple” dynamic

“complexe” dynamic = cycles

René Thomas [1981] : two type of cycles, positive and negative.
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1. Positive cycle : even number of negative arcs

2. Negative cycle : even number of negative arcs
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Outline

No o e

Absence of cycle

Positive and negative cycles
Absence of positive/negative cycle
Positive feedback bound

Positive and negative cliques

The monotone case

Conclusion
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In a cycle, each vertex i has a unique in-neighbor j, and

x; if j — i is positive
filz) = 7; if j — 4 is negative

Example @
fi(z) =5
e o hw-a
B(z) =7
R / fa(z) =73
@f\—/® f5(z) =24

(

hile
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Fixed points for a positive cycle

®
a \52)
O—0G

T = 5
T2 = 11
z=f(z) <= I3 =T
Ty =13
Ts = Iy
Adrien Richard Fixed points and feedback cycles in Boolean networks

fi(z) =5
L(z)=m
B(z) =13
fa(z) =73
f5(z) =24

IWBN 2020 Satellite School - Concepcién, Chile
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Fixed points for a positive cycle

/v®\ fi(z) = 25
L(z)=m
@ @ B(z) =13
K / fa(z) =73
@ﬂJ@ f(z) =24
Tl — T5
z=f(z) <= T3=T; =11
T4 = X3
T5 — T4
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Fixed points for a positive cycle

/v®\ fi(z) = 25
L(z)=m
@ @ B(z) =13
K / fa(z) =73
@ﬂJ@ f(z) =24
Tl — T5
z=f(z) <= T3=T; =11
Ty = T3 =11
T5 — T4
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Fixed points for a positive cycle

/v®\ fi(z) =5
h(z)=m
@ @ B(z) =13
K / fa(z) =7
@ﬂJ@ f5(z) = m4
Tl — T5
r=f@) > | m=m=T

564:33_3:1'1
Ts = T4 — 21
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Fixed points for a positive cycle

®
a \52)
O—0G

Tl — T5
T2 = 11
z=f(z) <= T3 =Ty =11

564:33_3:1'1
Ts = T4 — 21

Adrien Richard Fixed points and feedback cycles in Boolean networks

fi(z) =5
L(z)=m
B(z) =13
fa(z) =73
f5(z) =24

— 2= (m,m,71,71,7)
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Fixed points for a positive cycle

/®\, fi(z) = 25
L(z)=m
@ @ B(z) =13
K / fa(z) =73
@f\—/® f(z) =24
Tl — T5
z=f(z) <= xz:x%::ﬁ — = (®,m,T1,21,%1)

Ty =T3 =X
Ts = T4 — 21

There are exactly two fixed points : 00100 and 11011.

networks IWBN 2020 Satellite School - Concepcién, Chile 24/56



Fixed points for a positive cycle

© ®
i \? %/ \59
©—0O O—©

Tl — T5
T2 = 11
z=f(z) < B=T =T <= == (®,m,T,%,%)

Ty =T3 =X
Ts = T4 — 21

There are exactly two fixed points : 00100 and 11011.

networks IWBN 2020 Satellite School - Concepcién, Chile
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Fixed points for a negative cycle

®
a \?
O—0

I = T5
T2 =1
r=f(z) <~ T3 =T
Ty = T3
T5 — T4

(z) = 5
() =m
(z) =
(z) = 3
(z) =1
'WBN 2020 Satellite School - Concepcién
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Fixed points for a negative cycle

®
®/\

{7
@B

I =I5
T2 =T
T3 =722 =21
Ty = 23
Ts = Iy

(z) = 5
() =m
(z) =
(z) = 3
(z) =1
'WBN 2020 Satellite School - Concepcién

Chi
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Fixed points for a negative cycle

® fi(z) = 25
@/ \’@ h(z)=mn
Llz)=m
K / fa(z) =23
O—OB Jo(@) = @
Tl = T5
T2 = 11
T3 =722 =21
Ty =23 =171
T5 — T4

Chi
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Fixed points for a negative cycle

/v®\ fi(z) =5
h(z)=m
@ @ B(z) =13
K \/ fa(z) =23
@f\—/@ f5(z) = m4
Tl = T5
p= @) > | n=m=m

€Ty = T3 = T1
X5 = Ty = X1

Adrien Richard Fixed points and feedback cycles in Boolean netwoil
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Fixed points for a negative cycle

/w®\ fi(z) = 25
L(z)=m
@ @ Llz)=m
K \/ fa(z) = 23
@f\—/® f(z) =24
Tl = T5
x=f(z) <= xi _ :L% =7 = contradiction

€Ty = T3 = T1
X5 = Ty = X1

Adrien Richard Fixed points and feedback cycles in Boolean netwol
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Fixed points for a negative cycle

/®\, fi(z) = 25
® L(z)=m
B(z) =7
R / fa(z) = 23
@f\—/® f(z) =24
I =I5
T2 =T
x=f(z) <= 23 =Ty =T = contradiction
Ty = T3 = 21
Ts =Ty = Ty
There is no fixed point!

(

hile
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Proposition

1. If G is a positive cycle,
min(G) = max(G) = 2.
1. If G is a negative cycle,

min(G) = max(G) = 0.

Adrien Richard Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepcién, Chile 26/56



Outline

Absence of cycle

Positive and negative cycles

Absence of positive/negative cycle
Positive feedback bound

Positive and negative cliques

The monotone case

No o e

Conclusion
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Theorem [Aracena, 2008]

Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.
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Theorem [Aracena, 2008]

Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.

Corollary [Robert 1980]
If G is acyclic, then min(G) = max(G) = 1.
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Theorem [Aracena, 2008]
Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.
Let G be a strongly connected interaction graph.

3. If G has only positive cycles, then min(G) > 2.
4. If G has only negative cycles, then max(G) = 0.

Corollary [Robert 1980]
If G is acyclic, then min(G) = max(G) = 1.
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Theorem [Aracena, 2008]
Let G be an interaction graph.

1. If G has only positive cycles, then min(G) > 1.

2. If G has only negative cycles, then max(G) < 1.
Let G be a strongly connected interaction graph.

3. If G has only positive cycles, then min(G) > 2.
4. If G has only negative cycles, then max(G) = 0.

Corollary [Robert 1980]
If G is acyclic, then min(G) = max(G) = 1.
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LOCAL LEMMA

situation in state x situation in state y

RNy %
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LOCAL LEMMA

situation in state x situation in state y
1 1 1 0 0 1 1 0 0 1 0 1

Question : Can we compare f;(z) et f;(y)?
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LOCAL LEMMA

situation in state x situation in state y

BNY Y74

Question : Can we compare f;(z) et f;(y)?

Réponse : Yes! We have fi(z) > f;(y).
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < l.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < l.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.

1. For all vertex ¢ we set v; := y; — ;.
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < l.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.

2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.
Proof. Suppose that z; < y;, that is, v; = 1, the other case is similar.

z; > y; forallj —

= filx) > f; = 12>y = <>
7y <y forallj%i} fi(@) 2 fily) L=y
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.

Proof. Suppose that z; < y;, that is, v; = 1, the other case is similar.

z; > y; forallj —

= filx) > f; = 12>y = <>
7y <y forallj%i} fi(@) 2 fily) L=y

situation in state x situation in state y
1 lwll\/o 0 1 1 Owoi\/l 0 1
\@/ \@/
fiz) = fi(y)
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.
Proof. Suppose that z; < y;, that is, v; = 1, the other case is similar.

z; > y; forallj —

= filx) > f; = 12>y = <>
7y <y forallj%i} fi(@) 2 fily) L=y

Thus there is 7 — @ with z; < y; or 7 — @ with z; > y;.
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.
Proof. Suppose that z; < y;, that is, v; = 1, the other case is similar.

z; > y; forallj —

= filx) > f; = 12>y = <>
7y <y forallj%i} fi(@) 2 fily) L=y

Thus there is 7 — @ with z; < y; or 7 — @ with z; > y;.
Thus there is j — ¢ with v; =1 or j — 7 with v; = —1.
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.
Proof. Suppose that z; < y;, that is, v; = 1, the other case is similar.

z; > y; forallj —

= filx) > f; = 12>y = <>
7y <y forallj%i} fi(@) 2 fily) L=y

Thus there is 7 — @ with z; < y; or 7 — @ with z; > y;.

Thus there is j — ¢ with v; =1 or j — 7 with v; = —1.
Thus there is j — ¢ with sign v;v;. O
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < l.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.

2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.

3. There is a cycle dgiyiz . . . igip where the sign of 4 — ik 41 is vy v, .

”?%1

Vig ”14\ / Uiy Vig
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Theorem [Aracena, 2008] If G has only negative cycles, then max(G) < 1.J

Proof. Let f be a BN on G and let z and y be distinct fixed points of f.
1. For all vertex i we set v; := y; — ;.
2. If v; # 0 then ¢ has an in-coming arc j — ¢ with sign v;v;.

3. There is a cycle dgiyiz . . . igip where the sign of 4 — ik 41 is vy v, .

”?%1

Vig ”14\ / Uiy Vig

Oer®

Vig 'Uig

4. The sign s of this cycle is s = (vov1) - (v1v2) - (v2u3) + ... (-vpvg) = 1.
O
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Theorem [Aracena, 2008]
Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.

Let G be a strongly connected interaction graph.
3. If G has only positive cycles, then min(G) > 2.
4. If G has only negative cycles, then max(G) = 0.
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Theorem [Aracena, 2008]
Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.

Let G be a strongly connected interaction graph.
3. If G has only positive cycles, then min(G) > 2.
4. If G has only negative cycles, then max(G) = 0.

For all z,y € {0,1}", we set A(z,y) :={i € [n] : z; # y;}.
Positive cycle lemma. If z and y are distinct fixed points of f, then

G[A(z,y)] has a positive cycle.

|
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Question : Is it difficult to decide if G has a positive/negative cycle ? J

— Reduction to the strongly connected case
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Question : Is it difficult to decide if G has a positive/negative cycle ? J

— Reduction to the strongly connected case

0~

: @ L t.::.z
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Question : Is it difficult to decide if G has a positive/negative cycle ? J

— Reduction to the strongly connected case

[ ]
e e ° /)F s .
G \\// — D K\/l
L[] [ ]
[ ] \ [ ] /
G has a positive cycle <= D has an even cycle

G has a negative cycle <= D has an odd cycle
<= D is not bipartite
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Question : Is it difficult to decide if G has a positive/negative cycle ?

J

— Reduction to the strongly connected case

[ ]
e e ° ;’—? s °
G \\// — D K\/‘\Z
L[] [ ]
[ ] \ [ ] /
G has a positive cycle <= D has an even cycle

G has a negative cycle <= D has an odd cycle 9
<= D is not bipartite

We can decide in O(n?) if D is bipartite :
1. We take a spanning tree T'C D, and a proper 2-coloring ¢ of T.

2. D is bipartite <= ¢ is a proper coloring of D.
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Question : Is it difficult to decide if G has a positive/negative cycle ?

J

— Reduction to the strongly connected case

e e ° 1:’—) * ™ °
G \\// — D K\/l
L[] [ ]
[ ] \ [ ] /
G has a positive cycle <= D has an even cycle O(n?)

G has a negative cycle <= D has an odd cycle 9
<= D is not bipartite

Theorem [Robertson-Seymour-Thomas, 1999 ; McCuaig 2004]

We can decide in polynomial time if D has an even cycle.
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Outline

No o e

Absence of cycle

Positive and negative cycles
Absence of positive/negative cycle
Positive feedback bound
Positive and negative cliques

The monotone case

Conclusion
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We have seen that

G acyclic = G without positive cycle = max(G) <1

Do we have something of the form

G is not so far from being acyclic = max(G) is not too large?
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We have seen that

G acyclic = G without positive cycle = max(G) <1

Do we have something of the form

G is not so far from being acyclic = max(G) is not too large?

How define a distance to acyclicity ?
— number of cycles ?

< min bn of vertices to delete
to make the graph acyclic 7
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transversal number

7(G) :
:= min size of a set of vertices intersecting every cycle
:= minimum size of a Feedback Vertex Set (FVS)
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transversal number

7(G) :
:= min size of a set of vertices intersecting every cycle
:= minimum size of a Feedback Vertex Set (FVS)

N, TR
VAR I

T=1 T=2 T=3

|

—>
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transversal number

7(G) :
:= min size of a set of vertices intersecting every cycle
:= minimum size of a Feedback Vertex Set (FVS)

7(G) := positive transversal number
:= min size of a set of vertices intersecting every positive cycle
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7(G) :
:= min size of a set of vertices intersecting every cycle
:= minimum size of a Feedback Vertex Set (FVS)

transversal number

Tp(G)

positive transversal number
:= min size of a set of vertices intersecting every positive cycle

A 2 N
\ﬂ.—/ow oo
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7(G) :
:= min size of a set of vertices intersecting every cycle
:= minimum size of a Feedback Vertex Set (FVS)

transversal number

T(G)

positive transversal number
:= min size of a set of vertices intersecting every positive cycle

A 2 N
\ﬂ.—/ow oo

Remark 1 7, <7 (equality when all arcs are positive)
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7(G) :
:= min size of a set of vertices intersecting every cycle
:= minimum size of a Feedback Vertex Set (FVS)

transversal number

T(G)

positive transversal number
:= min size of a set of vertices intersecting every positive cycle

A 2 N
\ﬂ.—/ow oo

Remark 1 7, <7 (equality when all arcs are positive)

Remark 2 7 and 7, are invariant by subdivisions of arcs
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Positive Feedback Bound [Aracena 2008]

max(G) <2 < 27
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Positive Feedback Bound [Aracena 2008]

max(G) <2 < 27

Positive FVS S of size 7,
|

No positive cycle
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Positive Feedback Bound [Aracena 2008]

max(G) <27 <27

Positive FVS S of size 7,

|
4

{ J Let f be a RBon G.
Let A be the set of fixed points.
Let z and y be distinct fixed points.

No positive cycle
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Positive Feedback Bound [Aracena 2008]

max(G) <27 <27

Positive FVS S of size 7,

Let f be a RBon G.
Let A be the set of fixed points.
Let z and y be distinct fixed points.

- G[A(z,y)] has a positive cycle
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Positive Feedback Bound [Aracena 2008]

max(G) <27 < 27

Positive FVS S of size 7,

|
(" 4

| Let/ beaRBon G.
Let A be the set of fixed points.
Az, y) L .
Let z and y be distinct fixed points.
G - G[A(z,y)] has a positive cycle

- A(z,y) intersects S, ie zs # ys
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Positive Feedback Bound [Aracena 2008]

max(G) <27 < 27

Positive FVS S of size 7,

|

~

Az, y)

4

N

Let f be a RBon G.
Let A be the set of fixed points.
Let z and y be distinct fixed points.

- G[A(z,y)] has a positive cycle
- A(z,y) intersects S, ie zs # ys
- x> x5 is an injection from A to {0,1}°
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Positive Feedback Bound [Aracena 2008]

max(G) <27 < 27

Positive FVS S of size 7,

|

~

Az, y)

4

N

~

Let f be a RBon G.
Let A be the set of fixed points.
Let z and y be distinct fixed points.

- G[A(z,y)] has a positive cycle
- A(z,y) intersects S, ie zs # ys
- x> x5 is an injection from A to {0,1}°

Thus |A| < [{0,1}5] = 27
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Positive Feedback Bound [Aracena 2008]

max(G) <2 < 27

Remark G has no positive cycle = 7, =0 = max(G) <1
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Positive Feedback Bound [Aracena 2008]

max(G) <27 <27

Remark G has no positive cycle = 7, =0 = max(G) <1

This is the only upper bound on max(G)
that only depend on the cycle structure

No lower bound on max(G) !
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Theorem [Aracena, 2008]

Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.
3. More generally, max(G) < 27,

Let G be a strongly connected interaction graph.
4. If G has only positive cycles, then min(G) > 2.
5. If G has only negative cycles, then max(G) = 0.
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Theorem [Aracena, 2008]

Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.
3. More generally, max(G) < 27,

Let G be a strongly connected interaction graph.
4. If G has only positive cycles, then min(G) > 2.
5. If G has only negative cycles, then max(G) = 0.

Remarks
— No general lower bound on max(G).

— Few results on min(G).
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Theorem [Aracena, 2008]

Let G be an interaction graph.
1. If G has only positive cycles, then min(G) > 1.
2. If G has only negative cycles, then max(G) < 1.
3. More generally, max(G) < 27,

Let G be a strongly connected interaction graph.
4. If G has only positive cycles, then min(G) > 2.
5. If G has only negative cycles, then max(G) = 0.

Theorem [Bridoux-Durbec-Perrot-R., 2019]
1. It is polynomial to decide if max(G) > 1.
2. It is NP-complete to decide if max(G) > 2.
3. It is NEXPTIME-complete to decide if min(G) = 0.

Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepcién
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The bound 27 is very perfectible

e — S e—S e——> e ... e — e
'\./ \./ ‘\./ \./

e~ P e— Fe— Pe .- e — e

max(G)
27

max(QG)

~

~

2n/6
2n/4

o/ c/ ./ o/ QTPN2"/4
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\drie

Ric

The bound 27 is very perfectible

e~ Y e— P e— Pe --- e — e max(G) N2n/6
N ¥ N Y N Y& N
3 ° ° ° 27-17 ~ 2n/4
e~ S e— P e— e --- e — e max(G):l
'\./ \./ '\./ \./ o7 2n/4
[ () O ()

How introduce negative cycles in the bound?

— Difficult problem : positive cycles are sometime favorable

... and sometime unfavorable to the presence of many fixed points.
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The bound 27 is very perfectible

e~ Y e— P e— Pe --- e — e max(G) N2"/6
N ¥ N Y N Y& N
3 ° ° ° 27-17 ~ 2n/4
e~ S e— P e— e --- e — e max(G):l
'\./ \./ '\./ \./ o7 2n/4
[ () O ()

How introduce negative cycles in the bound?

— Difficult problem : positive cycles are sometime favorable

... and sometime unfavorable to the presence of many fixed points.
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Two approaches :

1. Fixe the graph and make variations on signs — clique K,,.

2. Fixe the signs and make variations of the graphs — all arcs positive.
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Outline

No o e

Absence of cycle

Positive and negative cycles
Absence of positive/negative cycle
Positive feedback bound

Positive and negative cliques
The monotone case

Conclusion
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8 BNs
max(K;') =2
27 =22 =4

OO,
@© ®
OL©)

~ 10*' BNs
4 < max(K;") < 16
2™ =25 =32

8 BNs
max(K; ) =3
27 =922 =4
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8 BNs
max(K;') =2
27 =22 =4

OO,
@© ®
OL©)

~ 10*' BNs
4 <max(K;) <16
2™ =25 =32

8 BNs
max(K; ) =3
27 =922 =4

D@

© ®
O=®

~ 10*! BNs
max(Kg ) =20
27 =25 =32
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is

du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is
du(x,y) = #A(z,y) .= #{i € [n] : 2 # yi}.

Example

00110011 Iy (2. ) —
11110000 H\Z, Y) =2

S
[
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is

du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-

2. We define the partial order < on {0,1}"™ by :

z<y <= z <y Vi€][n].
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du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-

2. We define the partial order < on {0,1}"™ by :

z<y <= z <y Vi€][n].
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is

du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-

2. We define the partial order < on {0,1}"™ by :

z<y <= z <y Vi€][n].

3. A chain is a set of pairwise comparable states.
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is

du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-

2. We define the partial order < on {0,1}"™ by :

z<y <= z <y Vi€][n].

3. A chain is a set of pairwise comparable states.
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is

du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-

2. We define the partial order < on {0,1}"™ by :

z<y <= z <y Vi€][n].

3. A chain is a set of pairwise comparable states.

4. An antichain is a set of pairwise incomparable states.

111

71N

110 101 011

chain | >< >< |
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Definitions

1. The Hamming distance between two states z,y € {0,1}" is

du (2, y) = #A(z, y) == #{i € [n] - 2 # yi}-

2. We define the partial order < on {0,1}"™ by :

z<y <= z <y Vi€][n].

3. A chain is a set of pairwise comparable states.

4. An antichain is a set of pairwise incomparable states.

111

71N

110 101 011

chain | > X |

(100 010 001) antichain

000
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Theorem [Gadouleau-R-Riis, 2015]

+1

—
~—

[MEIN]

< max(K,) <

S

< max(<) = (1))
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Theorem [Gadouleau-R-Riis, 2015]

1

[MEIN]

J) SR gl < _ n
max(K,") < S = max (K )

S

Varshamov Bound

i ]
\ |

Graham-Sloane Bound Sperner Lemma
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Theorem [Gadouleau-R-Riis, 2015]

()

2n+1

[MEIN]

< max(K;}) <

S

2

< max(K,) T (LZJ>

\ Varshamov Bound /

Graham-Sloane Bound Sperner Lemma

Remark : In both cases, the positive feedback bound is 2!, while

(1)) = 0= = o™
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Theorem [Gadouleau-R-Riis, 2015]

g n+1
(ij) < max(K;}) < 2 < max(K,) = ( Z )
n n+2 5]

Lower bound for the positive clique

Let L(n, k) the set of z € {0,1}" with exactly k ones; |L(n, k)| = (}).

St L(3,3)

N

o won o 1G.2)

100 010 001 L(3,1)

000 L(3,0)
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Theorem [Gadouleau-R-Riis, 2015]

()

n Dl n
< max(K < < max(K ) =
< max(h) < 2 < max(k)) = (1))

[MEIN]

S

Lower bound for the positive clique
Let L(n, k) the set of z € {0,1}" with exactly k ones; |L(n, k)| = (}).
Let A C L(n, k) with dy(z,y) > 4 for all distinct z,y € A.
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Theorem [Gadouleau-R-Riis, 2015]

(LZJ) 2n+1 n
2l < +) < < K7) =
Pl max(K,") < S = max(K, ") (L%J)

Lower bound for the positive clique
Let L(n, k) the set of z € {0,1}" with exactly k ones; |L(n, k)| = (}).
Let A C L(n, k) with dy(z,y) > 4 for all distinct z,y € A.

< There is a BN on K,/ that fixes A; thus max(K, ) > |A|.

Graham-Sloane Bound [1980]
It exists A C L(n, k) with dy(z,y) > 4 for all distinct z,y € A such that

|A] > %
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Theorem [Gadouleau-R-Riis, 2015]

()

n sl n
< max(K, < < max(K_ ) =
< max(h) < 2 < max(k)) = (1))

[MERS]

S

Upper bound for the positive clique

Let f be a BN on K. If z and y are distinct fixed points of f, then

max(z,y) = max([{i:z <y}, {2 > y}) > 2.
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Theorem [Gadouleau-R-Riis, 2015]

()

k+) < 2 K, "
< ma < < ma ) =
< max(K[) €~ < max(K;) (L%J)

[MERS]

S

Upper bound for the positive clique

Let f be a BN on K. If z and y are distinct fixed points of f, then
dmax(z,y) == max([{i:z; < yi}|, {02 > w}l) > 2.

Varshamov Bound [1965]
If A C{0,1}"™ and dmax(z,y) > 2 for all distinct z,y € A distincts, then

2n+1

Al < .
| |_n—|—2
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Theorem [Gadouleau-R-Riis, 2015]

g n+1
(LEJ) < max(K;l") < 2 < max(K, ) = ( Z )
n n+2 5]

Equality for the negative clique
Let f bea BN on K. we have z < y = f(z) > f(y).
Thus if 2 and y are fixed points, we have z < y = f(z) > f(y) =z > y.

Fixed points are pairwise incomparable : they form an antichain.
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Let f bea BN on K. we have z < y = f(z) > f(y).

Thus if 2 and y are fixed points, we have z < y = f(z) > f(y) =z > y.
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Sperner Lemma [1928]

The maximum size of an antichain of {0,1}" is (LZJ)'
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Theorem [Gadouleau-R-Riis, 2015]

s +1
(LEJ) < max(K:') < < max(K, ) = ( :)
n LEJ
max(K,,)
unbounded
max(K,")
n
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Theorem [Gadouleau-R-Riis, 2015]

(L J)

[MEIN]

n+2 - n

S

< max(K;) < 2o < max() = ()

max(K,,)
Corollary. For all fixed k and
unbounded sufficiently large n,
max(K;") max (K, ) > max(K;L_k).
n
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Theorem [Gadouleau-R-Riis, 2015]

J) Dl
+2

[MEIN]

< max(K,) <

< max(<) = (1))

S

Conjecture
If K7 is a signed clique with n vertices,

max(K;) < max(K,)
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Two approaches :

1. Fixe the graph and make variations on signs — clique K,,.

2. Fixe the signs and make variations of the graphs — all arcs positive.

46/56



Outline

No o e

Absence of cycle
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Positive feedback bound

Positive and negative cliques

The monotone case

Conclusion
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1. What happens when there are only positive cycles?
< In that case, 2 = 27
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1. What happens when there are only positive cycles?
< In that case, 27» = 27

2. What happens when there are only positive arcs?

Proposition

1. Suppose that G is strongly connected and has only positive cycles.

Let G be obtained from G by making positive every arc. Then
max(G) = max(G+).
2. Furthermore, every BN f on G is monotone, that is,

Vr,y € {0,1}" =<y = f(z) <f(y)
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Theorem [Knaster-Tarski, 1928]

If f is monotone then Fix(f) is a non-empty lattice. In particular,  has a
unique minimal fixed point and a unique maximal fixed point (wrt <).
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v(G) = “packing number”
:= maximum size of a set of pairwise vertex-disjoint cycles
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If f is monotone then Fix(f) is a non-empty lattice. In particular,  has a
unique minimal fixed point and a unique maximal fixed point (wrt <).

v(G) = “packing number”
:= maximum size of a set of pairwise vertex-disjoint cycles

c—3e I(—)I ei—e

* ei— 0 ec— e
v=1 v=2 v=2
T=2 T=3 T=2
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Theorem [Knaster-Tarski, 1928]

If f is monotone then Fix(f) is a non-empty lattice. In particular,  has a
unique minimal fixed point and a unique maximal fixed point (wrt <).

v(G) = “packing number”
:= maximum size of a set of pairwise vertex-disjoint cycles

c—3e I(—)I ei—e

* ei— 0 ec— e
v=1 v=2 v=2
T=2 T=3 T=2

Remark v <t
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Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2
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Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism

/
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1. L is a non-empty lattice
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Proof of the isomorphism

FVS of size 7

Adrien Richard Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepcién, Chile 50/56



Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism

FVS of size 7

[ \\.//'\\.//'\
VAVAN

Adrien Richard Fixed points and feedback cycles in Boolean networks IWBN 2020 Satellite School - Concepcién, Chile 50/56



Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism Vi, y € Fix(f) zs<ys < z<y
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2. L has no chain of size v + 2
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If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism Vi, y € Fix(f) zs<ys — z<y

Fix(f) = L:={zs:z €Fix(f)}  (LC{0,1}°)
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Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that

1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism Vz,y € Fix(f)

Fix(f)

S0

[ AN

1
[/ \

/

0

7\

VAVAY

L:={zs:z € Fix(f)}

zs < Ys

s <ys — x<y

(L C{0,1}%)

[ AN

1 1
/N

/

0

\

7\

VaVaY
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Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism Vi, y € Fix(f) zs<ys — z<y

Fix(f) = L:={zs:z €Fix(f)} (L C{0,1}°)

S| 0 1 0 zs < Yg 1 1
7~/ 7/~ /1
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S 0 1 0 s < Yg 1 1 0
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If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2
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Fix(f) = L:={zs:z €Fix(f)} (L C{0,1}°)
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If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of the isomorphism Vi, y € Fix(f) zs<ys — z<y
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Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of 2 IfFix(f) has a chain of k + 1 fixed points then v > k.
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If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of 2 IfFix(f) has a chain of k + 1 fixed points then v > k.

»=111111111111111111
r*=111111111111100000
»=1111111110000000TO0°O0
2?=1111000000O0O0O0O0O0000
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Theorem [Aracena-Salinas-R, 2017]
If f is monotone, Fix(f) is isomorphic to a subset L C {0,1}" such that
1. L is a non-empty lattice

2. L has no chain of size v + 2

Proof of 2 IfFix(f) has a chain of k + 1 fixed points then v > k.
Thus Fix(f) has no chain of size v + 2, and L also.

»=1111111111111[1111T1
r*=11111 1111111100000
=111 1[1 111100 00/0000O0O0
r2=[111 1[0 0 0 0 0/0O 0 0 0 0 0 0 0O
z1'=/0 0 0 0JO O O0OO0OO0DO0OOOOOOO0O0O0
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Theorem [Erd3s, 1945]
If A C{0,1}™ has no chain of size { + 1 then

|A| < sum of the { largest binomial coefficient ()
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Theorem [Erdds, 1945]
If A C{0,1}™ has no chain of size { + 1 then

|A| < sum of the { largest binomial coefficient ()

Remark The case £ = 1 is Sperner Lemma on antichains
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Theorem [Erd3s, 1945]
If A C{0,1}™ has no chain of size { + 1 then

|A| < sum of the { largest binomial coefficient ()

Corollary If f is monotone then

IFix(f)] —2 < sum of the v — 1 largest binomial coefficients (J)
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Theorem [Erdds, 1945]
If A C{0,1}™ has no chain of size { + 1 then

|A| < sum of the { largest binomial coefficient ()

Corollary If f is monotone then

IFix(f)] —2 < sum of the v — 1 largest binomial coefficients (J)

Proof Let L C {0,1}" a non-empty lattice isomorphic to Fix(f)

max a

no chain of
size v+ 2

min b
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Theorem [Erdds, 1945]
If A C{0,1}™ has no chain of size { + 1 then

|A| < sum of the { largest binomial coefficient ()

Corollary If f is monotone then

IFix(f)] —2 < sum of the v — 1 largest binomial coefficients (J)

Proof Let L C {0,1}" a non-empty lattice isomorphic to Fix(f)

max a

no chain of

~
size v < sum of the v — 1 largest (})

min b
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Corollary max(GT) < sum of thev — 1 largest (}) + 2 J
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(-72)

7 — 1 coefficients
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Corollary max(GT) < sum of thev — 1 largest (}) + 2 J

(-72)

v — 1 coefficients

() 0

7 — 1 coefficients

Corollary max(GT) =27 = v=r1 J
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Corollary max(GT) < sum of thev — 1 largest (}) + 2 J

The bound is interesting when v is small compared with 7

The largest gap we known is vlog v < 307 [Alon-Seymour 93]
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Corollary max(GT) < sum of thev — 1 largest (}) + 2 J

The bound is interesting when v is small compared with 7
The largest gap we known is vlog v < 307 [Alon-Seymour 93]

For fixed v, 7 cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]
It exists h : N — N such that, for every digraph G,

7 < h(v)

The bound given on h(v) is huge (iterated use of Ramsey theorem)
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Corollary max(GT) < sum of thev — 1 largest (}) + 2 J

The bound is interesting when v is small compared with 7
The largest gap we known is vlog v < 307 [Alon-Seymour 93]

For fixed v, 7 cannot be arbitrarily large...

Theorem [Reed-Robertson-Seymour-Thomas, 1995]
It exists h : N — N such that, for every digraph G,

7 < h(v)

The bound given on h(v) is huge (iterated use of Ramsey theorem)

Corollary max(G) < 27 < 27 < 2M¥) J

Conjecture max(G) < 20 lgv) J
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Outline

No o e

Absence of cycle

Positive and negative cycles
Absence of positive/negative cycle
Positive feedback bound

Positive and negative cliques

The monotone case

Conclusion
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. BNs are classical models for complexe systems : easy to define,
but hard to predict.

. Central question : What can be said on the dynamics of a BN f
according to its interaction graph G'7

. We study fixed points, through min(G) and max(G).

Set Theory

Sperner Lemma
Erdos extension
Tarski Theorem

Graphe Theory

Even/odd cycles
Erd6s-Pésa property

Coding Theory

Graham-Sloane bound
Varshamov bound
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1. BNs are classical models for complexe systems : easy to define,

but hard to predict.

2. Central question : What can be said on the dynamics of a BN f
according to its interaction graph G ?

3. We study fixed points, through min(G) and max(G).
< Interesting upper bound on max(G).
— No lower bound on max(G).
— Few results on min(G).
— Positive cycles are rather well understood.

Conjecture : max(G) can be bounded according to the maximum
number of vertex-disjoint positive cycles in G.
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. BNs are classical models for complexe systems : easy to define,

but hard to predict.

. Central question : What can be said on the dynamics of a BN f
according to its interaction graph G ?

. We study fixed points, through min(G) and max(G).
< Interesting upper bound on max(G).

— No lower bound on max(G).

— Few results on min(G).

— Positive cycles are rather well understood.

— Negative cycles much less understood.

. MANY other dynamical properties have to be considered.
— Number of periodic configuration, number of limit cycles.
— Length of limite cycles and transitory phases.

— Reachability
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Gracias!
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